Volume Cross-section Project

Your job is make a physical model of a solid with a known cross section on a base with a standard function, find the volume of your model using a Riemann sum, and the volume using an integral.

1. The base function can be any non-linear function except a parabola, square root, or absolute value.

2. The cross sections can be any shape except a square. You must email me or tell me by Friday, May 12th what your base function and cross-sections will be.I must approve them before you begin working.

3. The materials/cross-sections can be no thicker than 0.25". Your model must be at least 6 inches long. There must be at least 24 cross-sections.

4. A typed description of the functions you used and what the cross-sections look like.

- a) The computed area and volume of each cross-section.
- b) The total volume of the slices in your model using a Riemann Sum. (Specify Left, Right, Midpoint, or Trapezoidal Sum and show work)

c) The theoretical volume as defined by a definite integral. If your problem is not integrable, you may use the Numerical Integration feature of your calculator.

d) What did you learn from this project?

Grading Rubric

Paper

Category	Points
Professional and neatly typed mathematical paper	4 points
Description of work (see #4 above)	8 points
Mathematical accuracy	8 points

Cross-section Volume

Category	Points
Cross-sections correctly designed and measured	4 points
Area of each cross-section shown	4 points
Riemann Sum calculated correctly and work shown	5 points
Volume computed correctly and work shown.	5 points
Neatness/Execution	4 points
Creativity/Uniqueness	4 points
Complexity of Function	4 points

Total: _____/50