AP Calculus AB

Name \qquad
$2^{\text {nd }}$ semester review
Calculator OK

Find the area enclosed by the lines and curves. You must show your set up, can solve using a calculator.

1. $y=x, y=\frac{1}{x^{2}}, x=2$
2. $x=2 y^{2}, x=0, y=3$
3. The base of a solid is the region enclosed between the graphs of $y=\sin x$ and $y=-\sin x$ from $\mathrm{x}=0$ to $x=\pi$. Each cross section is perpendicular to the x -axis is a semi-circle with diameter connecting the two graphs. Find the volume of the solid.
4. Find the volume of the solid generated by revolving the region enclosed by the parabola $y^{2}=4 x$ and the line $\mathrm{y}=\mathrm{x}$ about:
a. the x -axis
b. the y-axis
c. the line $x=4$
d. the line $y=4$
5. Approximate the area under the curve $y=x^{2}$ from $x=0$ and $x=3$ with six subintervals:
a. RRAM
b. LRAM
c. MRAM
6. Solve the initial value problem.
a. $\frac{d y}{d x}=1+x+\frac{x^{2}}{2}, \quad y(0)=1$
b. $\frac{d y}{d t}=\frac{1}{t+4}, y(-3)=2$
7. $f^{\prime}(x)=\sin ^{2} x$ and $f(1)=3$, find $f(6)$
8. A violin made in 1785 by John Betts, one of England's finest violin makers, cost $\$ 250$ in 1924 and sold for $\$ 7500$ in 1988. Assuming a constant relative rate of appreciation, what was the rate?
*you should review slope field problems on page 336

Answers:

1. 1
2. 18
3. $\frac{\pi^{2}}{4}$
4a. $\frac{32 \pi}{3}$
b. $\frac{128 \pi}{15}$
c. $\frac{64 \pi}{5}$
d. $\frac{32 \pi}{3}$
5a. 11.375
b. 6.875
c. 8.9375

6a. $y=\frac{x^{3}}{6}+\frac{x^{2}}{2}+x+1$
b. $y=\ln (t+4)+2$
7. 5.861
8. 5.3%

