Complete all problems with your group, starting with your group's problem. You will be putting your problem on the board, so make sure it is neat and correct!

1. Prove: $\cot x(\tan x \sin x+\cos x)=\csc x$
$\Leftrightarrow R \cot x \tan x \cdot \sin x+\cot x \cdot \cos x=$

$$
\sin x+\frac{\cos x}{\sin x} \cdot \cos x=
$$

$$
\frac{\sin ^{2} x+\cos ^{2} x}{\sin x}=
$$

$$
\frac{1}{\sin x}=
$$

2. Prove: $\csc x-\sin x=\cot x \cos x$

$$
\begin{array}{r}
L \Rightarrow R \quad \frac{1}{\sin x}-\sin x= \\
\frac{1-\sin ^{2} x}{\sin x}= \\
\frac{\cos ^{2} x}{\sin x}= \\
\\
\frac{\cos x \cdot \cos x}{\sin x}=
\end{array}
$$

3. Prove: $\cos 3 x+\cos x=2 \cos 2 x \cos x$
$\mapsto R \quad \cos (2 x+x)+\cos (2 x-x)=$

$$
\begin{aligned}
& \cos (2 x+x)+\cos (2 x-x)= \\
& \cos 2 x \cos x-\sin 2 x \sin x+\cos 2 x \cos x+\sin 2 x \sin x=
\end{aligned}
$$

$$
2 \cos 2 x \cos x \sqrt{ }
$$

4. Prove: $\frac{2}{1+\cos 2 x}=\sec ^{2} x$
$\Rightarrow R$

$$
\begin{gathered}
\frac{2}{1+\left(2 \cos ^{2} x-1\right)}= \\
\frac{2}{2 \cos ^{2} x}= \\
\frac{1}{\cos ^{2} x}= \\
\sec ^{2} x
\end{gathered}
$$

5. Solve for x over $[0,2 \pi)$: $2 \tan \mathrm{x} \cos \mathrm{x}=\tan \mathrm{x}$

$$
\tan x(2 \cos x-1)=0
$$

$$
\tan x=0 \quad \cos x=\frac{1}{2}
$$

$$
x=0, \pi, \frac{\pi}{3}, \frac{5 \pi}{3}
$$

6. Solve for x over $[0,2 \pi)$: $\quad \cos 2 x=\cos x$

$$
\begin{gathered}
2 \cos ^{2} x-1=\cos x \\
2 \cos ^{2} x-\cos x-1=0 \\
(2 \cos x+1)(\cos x-1)=0 \\
\cos x=-\frac{1}{2}, 1
\end{gathered}
$$

7. Find the exact value of the trig function: $\tan \left(\frac{7 \pi}{12}\right)$

$$
\begin{aligned}
& \text { Id the exact value of the trig function: } \tan \left(\frac{7 \pi}{12}\right) \\
& \tan \left(\frac{3 \pi}{12}+\frac{4 \pi}{12}\right)=\tan \left(\frac{\pi}{4}+\frac{\pi}{3}\right)=\frac{\tan \frac{\pi}{4}+\tan \frac{\pi}{3}}{1-\tan \frac{\pi}{4} \tan \frac{\pi}{3}}=\frac{1+\sqrt{3}}{1-\sqrt{3}}
\end{aligned}
$$

8. Find the exact value of the trig function: $\cos \left(\frac{7 \pi}{8}\right)$ Quad 2 (\cos is neg)

$$
\cos \left(\frac{\frac{7 \pi}{4}}{2}\right)=-\sqrt{\frac{1+\cos \frac{7 \pi}{4}}{2}}=-\sqrt[2]{\frac{1+\frac{\sqrt{2}}{2}}{2 \cdot 2}} \cdot 2=-\sqrt{\frac{2+\sqrt{2}}{4}}=\sqrt{\frac{\sqrt{2+\sqrt{2}}}{2}}
$$

