Directions: Answer each question without a calculator, unless otherwise specified.

1) Determine if each function is exponential. If exponential, identify a, b, whether it represents growth or decay, and the constant rate of growth or decay.
a) $f(x)=x^{1.2} \quad$ Not exp.
c) $f(x)=4 \cdot\left(\frac{2}{3}\right)^{x}$ ExP. Decay
$a=4$
b) $f(x)=\left(\frac{1}{3}\right)^{-x}=3^{x}$ Exp. Growth

$$
b=2 / 3
$$

rate of Decay
$a=1$ $b=3$
d) $f(x)=2 \cdot(0.88)^{x}$

$$
\begin{aligned}
& a=2 \\
& b=.88
\end{aligned}
$$

$$
r=\frac{1}{3}
$$

Exp. Decay

$$
r=.12
$$

2) Find an exponential equation for a function whose graph contains the points $(0,4)$ and $(5,600.25)$. (You may use your calculator to help you compute the "b" value, but you must show alopraicwark to support your solution.)

$150.0625=b^{5} \quad b=2.724$

3) Evaluate the function $f(x)=-2 \bullet 8^{x}$: No calculator!
a) when $x=0 \quad f(0)=-2 \cdot 8^{0}=-2 \cdot 1$
c) when $x=\frac{2}{3} \quad f\left(\frac{2}{3}\right)=-2 \cdot 8^{2 / 3}$ $=-2$
b) when $x=-1 f(-1)=-2 \cdot 8^{-1}=\frac{-2}{8}=-\frac{1}{4}$

$$
=-2 \sqrt[3]{8^{2}}
$$

$$
=-2 \cdot 2^{2}
$$

4) Find the y-intercept, limit to growth, and the horizontal asymptotes for the follower? functions: No calculator!
a) $f(x)=\frac{12}{1+3(0.2)^{x}} \rightarrow y \operatorname{mint}(0,3)$
$\left.f(0)=\frac{12}{1+3(1)}=\frac{12}{4}=3 \quad \lim t=12\right)$
b) $f(x)=\frac{9}{1+2 e^{-x}}$ y-int $(0,3)$

$$
\begin{aligned}
& f(0)=\frac{12}{1+3(1)^{=}} \frac{12}{4}=3 \quad \lim ^{\prime}, t=(2) \\
& \text { HA. } y=0, y=12
\end{aligned}
$$

$$
f(0)=\frac{9}{1+2 e^{-0}}=\frac{9}{1+2}=3 \text { limit }=9
$$

HA $y=0, y=9$
5) Write an exponential equation using the following information:

Initial Value: $\$ 1000$
\% increase: 2.4% per year $r=.024$ Growth

$$
A(t)=1000(1.024)^{t}
$$

When will the value be equal to $\$ 1200$? (Calculators ok!) $\quad 1200=1000(1.024)^{t}$

$$
\begin{aligned}
& 1.2=\frac{1.024^{t}}{\log 1.024} \approx 7.688 \text { years } \\
& t=7.2
\end{aligned}
$$

6) The half-life of a certain radioactive substance is 150 days. If the initial amount of the substance is 100 g , determine when there will be less than 10 grams left. Write the equation and then use your calculator to help solve.

$$
A(t)=100\left(\frac{1}{2}\right)
$$

$$
10=100\left(\frac{1}{2}\right)^{t / 150}
$$

$$
\frac{1}{10}=\left(\frac{1}{2}\right)^{t / 150}
$$

$$
\frac{t}{150}=\frac{\log \frac{1}{10}}{\log \frac{1}{2}} \quad t \approx 498.3 \quad \text { after } 498.3 \text { days }
$$

7) Evaluate without using a calculator: (remember to rewrite as an exponential equation...)

$$
\begin{array}{ll}
\ln \frac{1}{e} & =\frac{-1}{e} \\
e^{\square} & =\frac{1}{e}
\end{array} \quad e^{1 / 88}=\underline{8}
$$

$\log _{5} \sqrt{125}=\frac{3}{2}$
$5^{x}=\sqrt{125}$

$$
\log \frac{1}{1000}=-3
$$

$$
10^{x}=10^{-3}
$$

$5^{x}=5^{3 / 2}$
8) Graph $y=-\log _{3}(x+4)$

9) Given a logistic function with initial value of 10 , limit to growth of 40 , and a point at $(3,17.5)$, find the equation for the logistic function. Round to the nearest hundredth.

$$
\begin{array}{lr}
(0,10) \\
c=40 \\
10=\frac{40}{1+a \cdot b^{0}} & (3,17.5) \\
10+10 a=40 & 17.5=\frac{40}{1+3 \cdot b^{3}} \\
10 a=30 & 17.5+52.5 b^{3}=40 \\
a=3 & 525 b^{3}=22.5 \\
b^{3}=.429 \\
& b \backsim .75
\end{array}
$$

$$
f(x)=\frac{40}{1+3 \cdot .75^{x}}
$$

Remember - You have a quiz (3.1-3.3) tomorrow! Check your answers on weebly!

