Precalculus

Review 2.1-2.5 Homework

Non-Cald Name_Key

1) Find the vertex of the parabola:
$y=4(x+6)^{2}-7$
Vertex $(-6,-7)$
2) Find the vertex of the parabola:

$$
\begin{aligned}
& f(x)=x^{2}-6 x+72 \\
& \begin{aligned}
X & =\frac{6}{2(1)}=\frac{6}{2}=3 \\
f(3) & =3^{2}-6(3)+72 \\
& =9-18+72=63
\end{aligned}
\end{aligned}
$$

$$
\text { vertex: }(3,63)
$$

3) Find the x and y-intercepts of the parabola:

$$
f(x)=x^{2}-6 x-72
$$

yint $f(0)=0^{2}-6(0)-72=-72 \quad(0,-72)$
pint $(x-12)(x+6)=0$

$$
\begin{array}{ll}
x=12 & x=-6 \\
(12,0) & (-6,0)
\end{array}
$$

4) Write an equation in vertex form for the parabola with vertex at $(-4,1)$ and containing the point $(5,-2)$

$$
\begin{aligned}
y & =a(x-n)^{2}+k \\
-2 & =a(5+4)^{2}+1 \\
-2 & =81 a+1 \\
-3 & =81 a
\end{aligned} \quad y=-\frac{3}{81}(x+4)^{2}+1
$$

$$
a=-3 / 81
$$

6) Write a linear equation if $f(-2)=4$ and

$$
\begin{aligned}
& f(3)=-6 \\
& (-2,4)(3,-6) \\
& m=\frac{-6-4}{3+2}=\frac{-10}{5}=-2 \\
& y-4=-2(x+2) \\
& y-4=-2 x-4 \\
& y=-2 x
\end{aligned}
$$

Describe the end behavior of the equation using limits.
7) $f(x)=7 x^{7}-6 x^{4}+5 x^{3}-2 x+1$
$\uparrow \quad \lim _{x \rightarrow \infty} f(x)=\infty$
\downarrow
8) $f(x)=-5 x^{4}+3 x^{2}-3 x+4$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=-\infty \\
& \lim _{x \rightarrow-\infty} f(x)=-\infty
\end{aligned}
$$

5) Find an equation for the polynomial shown.
6) Draw the shape of the graph and find zeros, degree, leading coefficient, and y-intercept:

$$
\begin{gathered}
f(x)=-5(x-3)^{3}(x+2)^{2} \\
-5 x^{5} \\
\downarrow \\
\text { zeros } \\
x=3 \quad x=-2 \\
f(0)=-5(-3)^{3}(2)^{2} \\
= \\
=540
\end{gathered}
$$

(10) Divide usingtorng ofivion: $\frac{5 x^{4}+3 x^{3}-x^{2}+2 x-6}{x^{2}+4}$

$$
\begin{array}{r}
x^{2}+0 x+4 \sqrt{5 x^{4}+3 x^{3}-x^{2}+2 x-61^{2}+4} \\
\frac{-\left(5 x^{4}+0 x^{3}+20 x^{2}\right)}{3 x^{3}-21 x^{2}+2 x} \\
\frac{-\left(3 x^{3}+0 x^{2}+12 x\right)}{-21 x^{2}-10 x-6} \\
\frac{-\left(-21 x^{2}+0 x-84\right)}{-10 x+78} \\
5 x^{2}+3 x-21+\frac{-10 x+78}{x^{2}+4}
\end{array}
$$

12) The following are zeros of a cubic polynomial: 2 and $1+2 \mathrm{i}$
a. List all the zeros: $\quad 2,1+2 i, 1-2 i \quad$ (Be sure to add any missing complex zeros.)
b. Write in Factored Form: $(x-2)(x-1-2 i)(x-1+2 i)=0$
c. X-intercepts (Real Zeros): $\quad x=2$
\qquad Y-intercept: \qquad
13) Use the remainder theorem to find $\mathrm{f}(-4)$ if

$$
f(x)=-2 x^{3}+3 x^{2}-5 x+7
$$

$-4-2$| -2 | 3 | -5 |
| ---: | ---: | ---: |
| | 8 | -44 | 19

$$
\begin{array}{rrr|r}
8 & -44 & 196 \\
\hline-2 & 11 & -49 & 203
\end{array}
$$

$$
f(-4)=203
$$

e. Write in Standard Form: $x^{3}-4 x^{2}+9 x-10=0$

Calculator

13) Completely factor the polynomial and find all zeros (exact answers, no decimals!):
$\mathrm{f}(\mathrm{x})=x^{3}+4 x^{2}-7 x-28 \quad \mathrm{x}=-4$

$$
f(x)=3 x^{3}-x^{2}-13 x-5
$$

| -4 | 1 | 4 | -7 |
| :---: | :---: | ---: | :---: |$|-28$

$$
\begin{aligned}
& x^{2}-7=0 \\
& x= \pm \sqrt{7}
\end{aligned}
$$

$(x+4)(x-\sqrt{7})(x+\sqrt{7})=0$

$$
\begin{aligned}
& x^{2}-2 x-1=0 \\
& x=\frac{2 \pm \sqrt{4-4(1)(-1)}}{2}=\frac{2 \pm 2 \sqrt{2}}{2}=1 \pm \sqrt{2}
\end{aligned}
$$

14) If a basketball is thrown straight up into the air with an initial velocity of $30 \mathrm{ft} / \mathrm{sec}$ from an initial height of 5 feet, will it hit a 20 foot high ceiling? Justify your answer. When will the ball hit the ground (assuming no ceiling impedes its path)? Use the equation: $h(t)=-16 t^{2}+v_{0} t+s_{0}$
$h(t)=-16 t^{2}+30 t+5$
vertex: $(.937,19.063)$
The highest the bal will not hit the curling
find the zero
$t \approx 2.03$ seconds
when the ball will hit the around.
15) Find all the zeros and completely factor.

$$
g(x)=2 x^{4}-3 x^{3}+7 x^{2}+7 x-5
$$

Rational zeros

$$
x=-1 \quad x=1 / 2
$$

$$
\begin{array}{cccc|c}
x=-1 & x=1 / 2 \\
-1) & 2 & -3 & 7 & 7 \\
\hline & -2 & 5 & -12 & 5 \\
\hline 2 & -5 & 12 & -5 & 0 \\
\hline & 1 & -2 & 5
\end{array} \text { cubic }
$$

$$
x^{2}-2 x+5=0 \quad x=-1 \quad x=1 / 2 \quad x=1+2 i \quad x=1-2 i
$$

$$
x=\frac{2 \pm \sqrt{4-4(1)(5)}}{2}
$$

$$
x=\frac{2 \pm \sqrt{-16}}{2}
$$

$$
=\frac{2 \pm 4 i}{2}
$$

$$
=1 \pm 2 l
$$

A \{quick\} refresh of topics that COULD be included on the Chapter 2.1, 2.3-2.5 Quest

2.1: Linear and Quadratic Functions

- Equations of Lines (Pt.-Slope and Slope-Int. Forms)
- Equations of Parabolas (Standard and Vertex Forms)
- Linear and Quadratic Modeling
2.3: Polynomials
- Graphing Polynomials (no calculator)
- Zeros, Multiplicity
- Y-Intercept
- End Behavior with Limits
2.4: Real Zeros of Polynomials
- Long Division
- Synthetic Division
- Synthetic Substitution/Remainder Theorem
- Factor Theorem
- Finding the real zeros by calculator and synthetic division
2.5: Complex Zeros/Fundamental Theorem of Algebra
- Finding all zeros of a polynomial and writing in factored form
- Complex Conjugate Zeros
- Finding a polynomial from given zeros

P6: Complex Numbers

- Not specifically tested, but included in 2.5 questions

