PART I: 4.1-4.3, 5.5, 5.6 (Right Angle Trig, Unit Circle, Law of Sines & Cosines)

(#1-6) Without using a calculator, find the exact values of each:

1. cos135°

 $2. \cot \frac{7\pi}{6}$

3. csc 240°

4. $\sin \pi$

5. sec 90°

6. $\tan \frac{5\pi}{3}$

7. Solve for the missing angles and sides of the triangle. **

8. Convert 37 degrees to radians.**

9. Convert 2 radians to degrees.**

- 10. Assume the angle $\, heta\,$ is an acute angle. Find the other five trig. functions if:
 - a. $\cos \theta = \frac{5}{9}$

b. $\csc \theta = \frac{13}{5}$

- 11. Evaluate the six trig. functions if point P (-4, -6) is on the terminal side of an angle θ .
- 12. Find $\sin \theta$ and $\tan \theta$ if $\cos \theta = \frac{2}{5}$ and $\cot \theta < 0$.
- 13. Determine if the triangle has 0, 1, or 2 possible triangles. **

a.
$$a = 3, b = 4, A = 102^{\circ}$$

b.
$$a = 4$$
, $b = 3$, $B = 24^{\circ}$

14. Solve the triangle and find the area of the triangle. **

a.
$$A = 33^{\circ}, b = 2, c = 4$$

b.
$$A = 31^{\circ}$$
, $a = 4$, $c = 5$

PART II: 4.4, 4.5, 4.7 (Trig Graphs, Inverse Trig, Solving Trig Equations)

(#15-18) Sketch two periods of the graph of the trig function. Make sure to include your scale and critical values on each axis.

15.
$$y = 4\cos 3\left(x - \frac{\pi}{3}\right) + 1$$

16.
$$y = -2\sin \pi x + 5$$

17.
$$y = 4 \tan 2x$$

18.
$$y = 3\csc 6x - 1$$

(#19-20) Write the equation of the each graph shown below. (4 points each)

(#21-25) Solve the trig equation over the interval $[0,2\pi]$.

21.
$$\cos x = -\frac{\sqrt{2}}{2}$$

22.
$$\cot x = -\sqrt{3}$$

23.
$$\sec x = -\sqrt{2}; [-\pi, \pi]$$

24.
$$\sin x = 0.73**$$

25.
$$\sec x = -1.92 **$$

(#26-30) evaluate the inverse trig function. *Reminder: inverse trig functions have restricted domains!*

26.
$$\sin^{-1}(1)$$
 27. $\cos^{-1}(-\frac{1}{2})$

28.
$$\sec^{-1}(\sqrt{2})$$
 29. $\tan^{-1}(-1)$ 30. $\cos\left(\tan^{-1}\left(\frac{\sqrt{3}}{3}\right)\right)$

- 31. Write the equation of a sine graph that has an amplitude of 4, a period of length 3π , a phase shift of $\frac{\pi}{4}$ to the left, and a vertical shift down 2.
- 32. At Hilton Head Island on June 10, high tide measured 12.8 feet on a pier at 9:21 am. The next low tide measured 6.6 feet at 3:33 pm. Write a sinusoidal equation modeling the behavior of the tide. What is the first time on June 10 that the tide measures 11 feet? **

- 33. The Ferris wheel at a local amusement park has a diameter of 40 feet and reaches a maximum height of 48 feet above the ground. One ride is three revolutions, which takes 2 minutes to complete.**
 - a. Draw a sketch of the graph and create an equation to model the height of a rider in terms of time (in seconds) on the Ferris wheel if they get on the ride at the bottom.
 - b. How high is the ride after 20 seconds? After 1 minute?
 - c. At what time(s) during the full ride does the rider reach a height of 25 feet?

PART III: Chapter 5 (Trig Identities)

(#34-37) Simplify using trig identities:

$$34. \cos^3 x + \cos x \sin^2 x$$

$$35. \frac{\cos^2 u + \cot^2 u + \sin^2 u}{\csc u}$$

$$36. \ \frac{1}{\sin^2 x} + \frac{\sec^2 x}{\tan^2 x}$$

$$37. \frac{1+\cot\theta}{1+\tan\theta}$$

(#38-41) Find all solutions in the interval $[0,2\pi)$.

$$38. \sqrt{2} \cot x \sin x - \cot x = 0$$

39.
$$3\cos t = 2\sin^2 t$$

40.
$$\sin 2x - 2\sin x = 0$$

41.
$$\cos 2x = \sin x$$

(#42-45) Prove the following:

42.
$$\cos x + \sec x = \frac{2 - \sin^2 x}{\cos x}$$

43.
$$1 + \tan^2 x = \frac{1}{1 - \sin^2 x}$$

44.
$$\frac{1}{1-\cos t} = \frac{1+\cos t}{\sin^2 t}$$

$$45. \cos\left(x - \frac{3\pi}{2}\right) = -\sin x$$

(#46-49) Evaluate the following without a calculator, using either the Sum/Difference or Half-Angle identities.

48.
$$\tan\left(\frac{\pi}{12}\right)$$

49.
$$\sin\left(\frac{5\pi}{8}\right)$$