

AP® CALCULUS AB 2016 SCORING GUIDELINES

Question 6

x	f(x)	f'(x)	g(x)	g'(x)
1	-6	3	2	8
2	2	-2	-3	0
3	8	7	6	2
6	4	5	3	-1

The functions f and g have continuous second derivatives. The table above gives values of the functions and their derivatives at selected values of x.

(a) Let k(x) = f(g(x)). Write an equation for the line tangent to the graph of k at x = 3.

(b) Let
$$h(x) = \frac{g(x)}{f(x)}$$
. Find $h'(1)$.

(c) Evaluate
$$\int_1^3 f''(2x) dx$$
.

(a)
$$k(3) = f(g(3)) = f(6) = 4$$

 $k'(3) = f'(g(3)) \cdot g'(3) = f'(6) \cdot 2 = 5 \cdot 2 = 10$

 $3: \begin{cases} 2: \text{slope at } x = 3\\ 1: \text{equation for tangent line} \end{cases}$

An equation for the tangent line is y = 10(x - 3) + 4.

(b)
$$h'(1) = \frac{f(1) \cdot g'(1) - g(1) \cdot f'(1)}{(f(1))^2}$$

= $\frac{(-6) \cdot 8 - 2 \cdot 3}{(-6)^2} = \frac{-54}{36} = -\frac{3}{2}$

 $3: \begin{cases} 2: \text{ expression for } h'(1) \\ 1: \text{ answer} \end{cases}$

(c)
$$\int_{1}^{3} f''(2x) dx = \frac{1}{2} \left[f'(2x) \right]_{1}^{3} = \frac{1}{2} \left[f'(6) - f'(2) \right]$$
$$= \frac{1}{2} \left[5 - (-2) \right] = \frac{7}{2}$$

 $3: \begin{cases} 2: \text{antiderivative} \\ 1: \text{answer} \end{cases}$

© 2016 The College Board.

Visit the College Board on the Web: www.collegeboard.org.