Find dy/dx of $y = \cot\left(\frac{5}{x}\right)$

PROBLEM 1

Find dy/dx of $y = \cot\left(\frac{5}{x}\right)$ $\frac{dy}{dx} = -\csc^2\left(\frac{5}{x}\right) \cdot \left(-5x^{-2}\right)$ $= \underbrace{5 \csc^2\left(\frac{5}{x}\right)}_{\chi^2}$

PROBLEM 2

Find dy/dx of $y = 5x\sqrt{4x^2 + 5x}$

PROBLEM 2

Find dy/dx of $y = 5x\sqrt{4x^2 + 5x} = 5x(4x^2 + 5x)^{\frac{1}{2}}$ $\frac{d^4y}{dx^2} = 5x(\frac{1}{2}(4x^2 + 5x)^{\frac{1}{2}}(8x + 5) + 5(4x^2 + 5x)^{\frac{1}{2}}$

PROBLEM 3

Find dy/dx of $y = \ln(4x^3)$

PROBLEM 3

Find dy/dx of $y = \ln(4x^3)$

$$\frac{dy}{dx} = \frac{1}{4x^3} \cdot 12x^2 = \frac{3}{x}$$

Find dy/dx of $y = e^{4+\ln x}$

PROBLEM 4

Find dy/dx of $y = e^{4 + \ln x}$ $e^4 \cdot e^{\ln x}$ $\frac{dy}{dx} = e^4$

PROBLEM 5

Find dy/dx of $y = \log_7(5x)$

PROBLEM 5

Find dy/dx of $y = \log_7(5x) = \frac{\ln 5x}{\ln 7}$ $= \frac{1}{\ln 7} \cdot \ln 5x$ $= \frac{1}{\ln 7} \cdot \frac{1}{4x} \left(\ln 5x \right)$ $= \frac{1}{\ln 7} \cdot \frac{1}{5x} \cdot 5$ $= \frac{1}{\sqrt{1.7}}$

PROBLEM 6

Find dy/dx of $y = \cos^{-1}(2x)$

PROBLEM 6

Find dy/dx of $y = \cos^{-1}(2x)$ $\frac{dy}{dx} = \frac{-1}{(1-(2x)^2)^2} \cdot 2 = \frac{-2}{(1-4x^2)^2}$

Find dy/dx of $y = x^{\tan x}$

PROBLEM 7

PROBLEM 8

Find dy/dx of xy+2x+3y=9

PROBLEM 8

Find dy/dx of
$$xy+2x+3y=9$$

$$x \frac{dy}{dx} + y + 2 + 3 \frac{dy}{dx} = 0$$

$$x \frac{dy}{dx} + 3 \frac{dy}{dx} = -y-2$$

$$\frac{dy}{dx} (x+3) = -y-2$$

$$\frac{dy}{dx} = -y-2$$

$$\frac{dy}{dx} = -y-2$$

PROBLEM 9

Find $\frac{d^2y}{dx^2}$ of $y^2 - x^2 = 24$

PROBLEM 9

Find
$$\frac{d^2y}{dx^2}$$
 of $y^2 - x^2 = 24$

$$2y \frac{dy}{dx} - 2x = 0$$

$$\frac{dy}{dx} = \frac{x}{y}$$

$$\frac{d^2y}{dx} = \frac{y}{y^2} \qquad \qquad y^2 = \frac{(y - x \frac{x}{y})y}{y^2} \qquad \qquad y^2 = \frac{y^2 - x^2}{y^3} = \frac{24}{y^3}$$

Find the equation of the tangent line of $x^2 + 4y^2 = 5$ at (-1,1).

PROBLEM 10

Find the equation of the tangent line of $x^2 + 4y^2 = 5$ at (-1,1).

of
$$x^{2} + 4y^{2} = 5$$
 at (-1,1).
 $2x + 8y \frac{dy}{dx} = 0$
 $x + 4y \frac{dy}{dx} = 0$
 $\frac{dy}{dx} = -\frac{x}{4y} = \frac{1}{4}$