Pre-Calc
Worksheet \#2 - Hyperbolas

Name \qquad DiMarco

Write an equation in standard form for each hyperbola. Use the graph to help you!

1) Foci at $(\pm 5,0)$; endpoints of transverse axis $(\pm 3,0)$

$$
\begin{gathered}
c=5 \\
c^{2}=a^{2}+b^{2} \\
25=a+b^{2} \\
b=4
\end{gathered}
$$

$$
\begin{gathered}
a=3 \\
\text { opens hor. } \\
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
\end{gathered}
$$

$$
\text { (} \stackrel{(3,0)}{\mathrm{N}} \text { vertices! }
$$

$$
\text { center }(0,0)
$$

2) Endpoints of transverse axis at $(\pm 4,0)$; Endpoints of conjugate axis at $(0, \pm 3)$
opens hor.
center $(0,0)$

$$
\frac{x^{2}}{16}-\frac{y^{2}}{9}=1
$$

3) The endpoints of the transverse axis are $(-2,-3)$ and $(-2,7)$ and of the conjugate axis are $(-4,2)$ and $(0,2)$

$$
\begin{aligned}
2 a & =10 \\
a & =5
\end{aligned}
$$

$$
\begin{array}{r}
2 b=4 \\
b=2
\end{array}
$$

center (-32)
opens vert.

$$
\begin{gathered}
\frac{(y-2)^{2}}{25}-\frac{(x+2)^{2}}{4} \\
a^{2} \\
b^{2}
\end{gathered}
$$

4) The transverse axis endpoints are $(-5,2)$ and $(3,2)$; the conjugate axis is length $6,26=6$

$$
\begin{gathered}
2 a=8 \\
a=4 \\
\text { center }(-1,2) \\
\frac{(x+1)^{2}}{16}-\frac{(y-2)^{2}}{9}=1
\end{gathered}
$$

$\underset{i-t r a n s v e r s e ~ a n d ~ s e m i-c o n j u g a t e ~ a x i s, ~ a n d ~}{b}$ write in parametric form: $\frac{x^{2}}{36}-\frac{y^{2}}{25}=1$ center $(0,0)$

$$
\begin{aligned}
& a=6 \\
& b=5
\end{aligned}
$$

$$
\begin{aligned}
& x=6 \sec t \\
& y=5 \tan t
\end{aligned}
$$

6) State the location of the center, the length of the semi-transverse and semi-conjugate axis, and write in parametric form: $\frac{(x-2)^{2}}{16}-\frac{(y+1)^{2}}{12}=1$. center $(2,-1)$

$$
\begin{aligned}
& a=4 \\
& b=\sqrt{12}=2 \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& x=2+4 \sec t \\
& y=-1+2 \sqrt{3} \tan t
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7) Put the equation. } 3 x^{2}-5 y^{2}-12 x+30 y+42=0 \text { into stand rid form. } \\
& \begin{array}{l}
3 x^{2}-12 x-5 y^{2}+30 y=-42 \\
3\left(x^{2}-4 x+4\right) \\
\hline 5\left(y^{2}-6 y+9\right)=-42+12-45 \\
\frac{3(x-2)^{2}-5(y-3)^{2}}{-75}=\frac{-75}{-75} \\
\frac{(y-3)^{2}}{15}-\frac{(x-2)^{2}}{25}=1
\end{array}
\end{aligned}
$$

8) Put the equation. $4 x^{2}-y^{2}-32 x+16 y-128=0$ into standard form.

$$
\begin{aligned}
& \frac{4 x^{2}-32 x-y^{2}+16 y=128}{4\left(x^{2}-8 x+16\right)-\left(y^{2}-16 y+64\right)}=128+64-64 \\
& \frac{4(x-4)^{2}}{128}-\frac{(y-8)^{2}}{128}=\frac{128}{128} \\
& \frac{(x-4)^{2}}{32}-\frac{(y-8)^{2}}{128}=1
\end{aligned}
$$

