

$$
2 a=\underset{a x i s}{\operatorname{transverse}}
$$

dist from center to vertex
$2 b=$ conjugate axis
1 from vertex to asympithe
$c=$ dist from center to
focal point

$$
\text { slope of asymptotes }= \pm \frac{b}{a}
$$

Equations of a Hyperbola (Opening Left/Right)

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

a is in positive term
b is in negative term
Parametric (h, k) center
$x=a \sec t+h$
$y=b \tan t+k$

$$
\text { slope of asymptotes }= \pm \frac{a}{b}
$$

Equations of a Hyperbola (Opening Up/Down)

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Parametrics

$$
\begin{aligned}
& x=b \tan t+h \\
& y=a \sec t+k
\end{aligned}
$$

