Directions: For each expanded equation, write down the name of the shape and then put it into standard form.

Name: Hyperbola
$25 x^{2}+200 x-4 y^{2}-8 y=-796$
$25\left(x^{2}+8 x+16\right)-4\left(y^{2}+2 y+1\right)=-796+400-4$
$\frac{25(x+4)^{2}}{-400}-\frac{4(y+1)^{2}}{-400}$
$\frac{(y+1)^{2}}{100}-\frac{(x+4)^{2}}{16}=1$
2. $x^{2}-4 x-20 y-36=0$
$x^{2}-4 x=20 y+36$
$x^{2}-4 x+4=20 y+36+4$

$$
(x-2)^{2}=20(y+2)
$$

Standard Form: $(x-2)^{2}=20(y+2)$
3. $-2 y^{2}+12 y-x-25=0$
$-2 y^{2}+12 y=x+25$
$-2\left(y^{2}-6 y+9\right)=x+25-18$

$$
-2(y-3)^{2}=x+7
$$

$(y-3)^{2}=-\frac{1}{2}(x+7)$

Name: Parabola

Standard Form $(y-3)^{2}=-\frac{1}{2}(x+7)$

Directions: Write the equation for each conic section described below
4. A parabola with focus at $(-2,-2)$ and directrix of $x=6$

5. An hyperbola with focus points at $(7,7)$ and $(7,-3)$ and slopes of asymptotes $\pm \frac{5}{8}$.

$$
\begin{aligned}
& 2 c=10 \\
& c=5 \\
& \text { opens vert. } \\
& \text { center }(7,2) \frac{(y-2)^{2}}{25}-\frac{(x-7)^{2}}{64}=1 \\
& a=5 \\
& b=8
\end{aligned}
$$

6. An hyperbola with center of $(0,-3)$, orlvertex at $(3,-3)$ and a focus at $(4,-3)$.

7. A parabola with vertex at $(-1,10)$ and focus point at $(-1,12)$.
 $n k$
opens up x^{2}

$$
(x+1)^{2}=8(y-10)
$$

Directions: Graph each parabola on the grid given. Identify the vertex, the focus, and the equations of the directrix and axis of summery.
8. $(y-2)^{2}=-12(x-6)$ opens left
Vertex: $(6,2)$

$$
4 p=12
$$

$$
p=3
$$

Focus: $(3,2)$
Directrix: $x=9$
Axis of Symmetry: $f \omega=12$

9. $10(y+5)=(x-1)^{2}$

Vertex: $(1,-5)$
opens up

$$
\begin{aligned}
& 4 p=10 \\
& 0=5
\end{aligned}
$$

Focus: $(1,-2.5)$

$$
p=5 / 2=2.5
$$

Axis of symmetry: $f w=10$

Directrix: $x=\frac{-3}{4}$
Axis of Symmetry: $f w=3$

Directions: Graph each hyperbola given and state the focus points and the slopes of the asymptotes.
11. $\left(\frac{x+2}{3}\right)^{2}-\left(\frac{y-5}{2}\right)^{2}=1 \quad$ center $(-2,5)$
gens hor.

$$
\begin{aligned}
a & =3 \\
b & =2 \\
c^{2} & =a^{2}+b^{2} \\
c & =\sqrt{13}
\end{aligned}
$$

12. $\left(\frac{\mathrm{y}-1}{8}\right)^{2}-\left(\frac{\mathrm{x}+1}{6}\right)^{2}=1$
center $(-1,1)$
Focus Points: $(-1, \mid \pm 10)$ opens vert.

$$
\begin{aligned}
& a=8 \\
& b=6 \\
& c^{2}=a^{2}+b^{2} \\
& c=\sqrt{100} \\
& c=10
\end{aligned}
$$

13. $y^{2}-x^{2}+8 y+16 x-148=0$

Slopes of Asymptotes: $-1,-9)$

$$
\pm \frac{8}{6}= \pm \frac{4}{3}
$$

$$
y^{2}+8 y-x^{2}+\frac{16 x=148}{2}
$$

$$
y^{2}+8 y+16-\left(x^{2}-16 x+64\right)=148+\frac{16}{1}-\frac{64}{1}
$$

$$
\frac{(y+4)^{2}}{100}-\frac{(x-8)^{2}}{100}=\frac{100}{100}
$$

Focus Points:

$$
\begin{aligned}
& \text { is Points: } \pm 10 \sqrt{2}) \\
& (8,-4 \pm+1)
\end{aligned}
$$

Slopes of Asymptotes:

$$
\pm 1
$$

center $(8,-4)$ opens vert.

$$
\begin{gathered}
a=10 \\
b=10 \\
c=10 \sqrt{2}
\end{gathered}
$$

