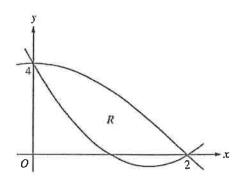
AP® CALCULUS AB 2013 SCORING GUIDELINES

Question 5

Let $f(x) = 2x^2 - 6x + 4$ and $g(x) = 4\cos(\frac{1}{4}\pi x)$. Let R be the region bounded by the graphs of f and g, as shown in the figure above.



- (a) Find the area of R.
- (b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = 4.
- (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an integral expression that gives the volume of the solid.
- (a) Area = $\int_0^2 [g(x) f(x)] dx$ = $\int_0^2 \left[4\cos\left(\frac{\pi}{4}x\right) - \left(2x^2 - 6x + 4\right) \right] dx$ = $\left[4 \cdot \frac{4}{\pi}\sin\left(\frac{\pi}{4}x\right) - \left(\frac{2x^3}{3} - 3x^2 + 4x\right) \right]_0^2$ = $\frac{16}{\pi} - \left(\frac{16}{3} - 12 + 8\right) = \frac{16}{\pi} - \frac{4}{3}$

4: { 1 : integrand 2 : antiderivative 1 : answer

(b) Volume = $\pi \int_0^2 \left[(4 - f(x))^2 - (4 - g(x))^2 \right] dx$ = $\pi \int_0^2 \left[\left(4 - \left(2x^2 - 6x + 4 \right) \right)^2 - \left(4 - 4\cos\left(\frac{\pi}{4}x\right) \right)^2 \right] dx$

 $3 : \begin{cases} 2 : \text{integrand} \\ 1 : \text{limits and constant} \end{cases}$

(c) Volume = $\int_0^2 [g(x) - f(x)]^2 dx$ = $\int_0^2 \left[4\cos\left(\frac{\pi}{4}x\right) - \left(2x^2 - 6x + 4\right) \right]^2 dx$