AP® CALCULUS AB 2011 SCORING GUIDELINES ## Question 5 At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{dW}{dt} = \frac{1}{25}(W - 300)$ for the next 20 years. W is measured in tons, and t is measured in years from the start of 2010. - (a) Use the line tangent to the graph of W at t=0 to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time $t=\frac{1}{4}$). - (b) Find $\frac{d^2W}{dt^2}$ in terms of W. Use $\frac{d^2W}{dt^2}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the amount of solid waste that the landfill contains at time $t = \frac{1}{4}$. - (c) Find the particular solution W = W(t) to the differential equation $\frac{dW}{dt} = \frac{1}{25}(W 300)$ with initial condition W(0) = 1400. - (a) $\frac{dW}{dt}\Big|_{t=0} = \frac{1}{25} (W(0) 300) = \frac{1}{25} (1400 300) = 44$ The tangent line is y = 1400 + 44t. $W(\frac{1}{4}) \approx 1400 + 44(\frac{1}{4}) = 1411$ tons - $2: \begin{cases} 1: \frac{dW}{dt} \text{ at } t = 0\\ 1: \text{answer} \end{cases}$ - (b) $\frac{d^2W}{dt^2} = \frac{1}{25} \frac{dW}{dt} = \frac{1}{625} (W 300)$ and $W \ge 1400$ Therefore $\frac{d^2W}{dt^2} > 0$ on the interval $0 \le t \le \frac{1}{4}$. The answer in part (a) is an underestimate. - $2: \begin{cases} 1: \frac{d^2W}{dt^2} \\ 1: \text{ answer with reason} \end{cases}$ - (c) $\frac{dW}{dt} = \frac{1}{25}(W 300)$ $\int \frac{1}{W 300} dW = \int \frac{1}{25} dt$ $\ln|W 300| = \frac{1}{25}t + C$ $\ln(1400 300) = \frac{1}{25}(0) + C \Rightarrow \ln(1100) = C$ $W 300 = 1100e^{\frac{1}{25}t}$ $W(t) = 300 + 1100e^{\frac{1}{25}t}, \quad 0 \le t \le 20$ - 1: separation of variables 1: antiderivatives 1: constant of integration 1: uses initial condition Note: max 2/5 [1-1-0-0-0] if no constant of integration Note: 0/5 if no separation of variables