AP® CALCULUS AB 2008 SCORING GUIDELINES ## Question 4 Graph of v A particle moves along the x-axis so that its velocity at time t, for $0 \le t \le 6$, is given by a differentiable function v whose graph is shown above. The velocity is 0 at t = 0, t = 3, and t = 5, and the graph has horizontal tangents at t = 1 and t = 4. The areas of the regions bounded by the t-axis and the graph of v on the intervals [0, 3], [3, 5], and [5, 6] are [5 - (a) For $0 \le t \le 6$, find both the time and the position of the particle when the particle is farthest to the left. Justify your answer. - (b) For how many values of t, where $0 \le t \le 6$, is the particle at x = -8? Explain your reasoning. - (c) On the interval 2 < t < 3, is the speed of the particle increasing or decreasing? Give a reason for your answer. - (d) During what time intervals, if any, is the acceleration of the particle negative? Justify your answer. - (a) Since v(t) < 0 for 0 < t < 3 and 5 < t < 6, and v(t) > 0 for 3 < t < 5, we consider t = 3 and t = 6. $$x(3) = -2 + \int_0^3 v(t) dt = -2 - 8 = -10$$ $$x(6) = -2 + \int_0^6 v(t) dt = -2 - 8 + 3 - 2 = -9$$ Therefore, the particle is farthest left at time t = 3 when its position is x(3) = -10. (b) The particle moves continuously and monotonically from x(0) = -2 to x(3) = -10. Similarly, the particle moves continuously and monotonically from x(3) = -10 to x(5) = -7 and also from x(5) = -7 to x(6) = -9. By the Intermediate Value Theorem, there are three values of t for which the particle is at x(t) = -8. - (c) The speed is decreasing on the interval 2 < t < 3 since on this interval v < 0 and v is increasing. - (d) The acceleration is negative on the intervals 0 < t < 1 and 4 < t < 6 since velocity is decreasing on these intervals. 3: $$\begin{cases} 1 : \text{identifies } t = 3 \text{ as a candidate} \\ 1 : \text{considers } \int_0^6 v(t) dt \\ 1 : \text{conclusion} \end{cases}$$ 3: $$\begin{cases} 1 : \text{positions at } t = 3, \ t = 5, \\ \text{and } t = 6 \\ 1 : \text{description of motion} \end{cases}$$ 1: answer with reason $$2:\begin{cases} 1: answer \\ 1: justification \end{cases}$$