Cumulative Review

 Quarter 1
Part 1: Chapter 2

1. Use the diagram above to determine the following.
a. $\lim _{x \rightarrow 2^{-}} f(x)=0$
b. $\lim _{x \rightarrow 2} f(x)=0$
c. $\lim _{x \rightarrow-3} f(x)=1$
d. $f(-3)=$ \qquad e. $\lim _{x \rightarrow-2} f(x)=$ DNE
f. $f(0)=-2$
2. Find the points of discontinuity of $f(x)=\frac{9 x^{2}-16}{3 x^{2}-x-4}$. For each discontinuity , identify the type.

$$
f(x)=\frac{(3 x+4)(3 x-4)}{(3 x-4)(x+1)}=\frac{3 x+4}{x+1}, x \neq 4 / 3,-1
$$

removable
3. Find the limit of the following;
c $x=y / 3$
inकinots
a. $\lim _{x \rightarrow 0}\left(\frac{2 x+\sin 3 x}{x}\right)$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{2 x}{x}+\lim _{x \rightarrow 0} \frac{3 \sin 3 x}{3 x} \\
& =\lim _{x}+3+\operatorname{lin}_{x \rightarrow 0} \frac{\sin 3 x}{3 x} \\
& =x_{2}+3.1=\$^{3 x}
\end{aligned}
$$

$$
\text { c. } \lim _{x \rightarrow \infty}\left(\frac{9 x^{2}-16}{3 x^{2}-x-4}\right) \quad \text { U.B.M. } y=\frac{9 x^{2}}{3 x^{2}}=3
$$

d. $\lim _{x \rightarrow-\infty}\left(\frac{3-4 x^{5}}{x^{3}-1}\right)$

$$
=-\infty
$$

e. $\lim _{x \rightarrow 0}\left(\frac{-2 \tan x}{x}\right)=\lim _{x \rightarrow 0} \frac{-2 \sin x}{x \cos x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{-2}{\cos x} \cdot \lim _{x \rightarrow 0} \frac{\sin x}{x} \\
& =\frac{-2}{1} \cdot 1
\end{aligned}
$$

4. Extend the function $f(x)=\frac{x^{2}-4 x-32}{x+4}$ to make it continuous.

$$
f(x)=\frac{(x-8)(x+4)}{(x+4}
$$

$$
f(x)= \begin{cases}\frac{x^{2}-4 x-32}{x+4} & , x \neq-4 \\ -12 & , x=y\end{cases}
$$

5. Describe the behavior of $f(x)=\frac{3 x-1}{x^{2}-x-12}$ to the right and left of the vertical asymptotes) using

$$
\begin{aligned}
& \text { b. } \lim _{x \rightarrow \frac{4}{3}}\left(\frac{9 x^{2}-16}{3 x^{2}-x-4}\right) \\
& =\lim _{x \rightarrow \frac{1}{3}}\left(\frac{3 x+4}{x+1}\right) \\
& =\frac{3^{3}\left(\frac{y}{3}\right)+4}{\frac{1}{3}+1}=\frac{8}{\frac{2}{3}}=8 \cdot \frac{3}{7}=\frac{24}{7}
\end{aligned}
$$

6. Write the equation of the tangent line to $f(x)=-3 x^{2}-x+1$ at $x=-2$. (Use a limit definition to do

$$
\begin{aligned}
& \text { this.) } \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left[-3(x+h)^{2}-(x+h)+1\right]-\left[-3 x^{2}-x+1\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{-6 x h-3 h^{2}-h}{h} \\
& f^{\prime}(-2)=-6(-2)-1=11 \\
& f(-2)=-3(-2)^{2}-(-2)+1 \\
& =-9 \\
& =\lim _{x \rightarrow 0}-6 x-3 h-1 \\
& =-6 x-1 \\
& \text { Part 2: Chapter 3.1-3.5 \#1 is C end of this key } \\
& \text { 2. Sketch a graph of } f^{\prime}(x) \text { if the function, } f(x) \text {, is shown below. }
\end{aligned}
$$

3. Find $d y / d x$ of each of the following:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{x^{3}(2 x+5)-\left(x^{2}+5 x-1\right)\left(3 x^{2}\right)}{x^{3}} \\
& =\frac{2 x^{4}+5 x^{3}-3 x^{3}-2}{x^{6}}
\end{aligned}
$$

$$
\begin{aligned}
\text { c) } y & =\sin x \cdot \cos x \\
\frac{d y}{d x} & =\sin x(-\sin x)+\cos x(\cos x) \\
& =-\sin ^{2} x+\cos ^{2} x
\end{aligned}
$$

$$
C=\frac{-x^{4}-10 x^{3}+3 x^{2}}{x^{6}}=\frac{-x^{2}-10 x+3}{x^{4}}
$$

b) $y=4 x^{3}-7 x+6 \sqrt{x}-\frac{4}{x^{3}}$

$$
\begin{aligned}
\frac{d y}{d x} & =12 x^{2}-7+3 x^{-1 / 2}+\frac{12}{x^{4}} \\
& =12 x^{2}-7+\frac{3}{\sqrt{x}}+\frac{12}{x^{4}}
\end{aligned}
$$

$$
\begin{aligned}
\text { d) } \begin{aligned}
y & =\frac{\cot x}{x^{3}} \text { quotient rub } \\
\frac{d y}{d x} & =\frac{x^{3} \cdot\left(-\csc ^{2} x\right)-\cot x\left(3 x^{2}\right)}{\left(x^{3}\right)^{2}} \\
& =\frac{-x^{3} \csc ^{2} x-3 x^{2} \cot x}{x^{6}}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { e) } y=\frac{\sin x}{1+\tan x} \\
& \text { f) } y=(1+\cos x)(1-\cos x) \\
& \frac{d y}{d x}=\frac{(1+\tan x) \cos x-\sin x\left(\sec ^{2} x\right)}{(1+\tan x)^{2}} \\
& \begin{array}{l}
y=1-\cos ^{2} x \\
y=\sin ^{2} x \\
y=\sin x \cdot \sin x
\end{array} \\
& =\frac{\cos x+\sin x-\tan x \sec x}{(1+\tan x)^{2}} \\
& \frac{d y}{d x}=\sin x(\cos x)+\sin x(\cos x) \\
& =2 \sin x \cos x
\end{aligned}
$$

4. Find the equation of the tangent line and normal line to $y=4 \cos x$ at $x=\frac{2 \pi}{3}$.

Tangent lime

$$
\begin{aligned}
& y^{\prime}=-4 \sin x \\
& y^{\prime}\left(\frac{2 \pi}{3}\right)=-4 \sin \left(\frac{2 \pi}{3}\right) \\
& =-4\left(\frac{\sqrt{3}}{2}\right) \\
& =-2 \sqrt{3} \leftarrow \text { slope } \\
& \text { Tangent line:. } \\
& y+2=-2 \sqrt{3}\left(x-\frac{2 \pi}{3}\right) \\
& \text { Normal line: } \\
& y+2=\frac{1}{2 \sqrt{3}}\left(x-\frac{2 \pi}{3}\right) \\
& \begin{aligned}
y\left(\frac{2 \pi}{3}\right) & =4 \cos \left(\frac{2 \pi}{3}\right) \\
& =4\left(-\frac{1}{2}\right)=-2 \leqslant \rho+\left(\frac{2 \pi}{3},-2\right)
\end{aligned}
\end{aligned}
$$

5. Find $\frac{d^{101} y}{d x^{101}}$ of $\mathrm{y}=\sin \mathrm{x}$.
pattern:

$$
\frac{d^{101} y}{d x^{101}}=\cos x
$$

Calculator OK

Part 5: Chapter 2

1. Find the limit using the graph.
b. $\lim _{x \rightarrow 0^{-}} \frac{|-x|}{-x}=1$
2. Find the average rate of change of $f(x)=x-3 x^{2}$ over the interval $[-4,-1]$.

$$
\begin{aligned}
\text { av. rate of chang } & =\frac{f(-1)-f(-4)}{-1--4} \\
& =\frac{-4-(-52)}{3} \\
& =16
\end{aligned}
$$

3. For $f(x)=x-3 x^{2}$

Cod:

$$
\begin{aligned}
& f(x)=x-3 x^{2} \\
& f^{\prime}(x)=1-6 x \\
& f^{\prime}(-1)=1-6(-1)=7
\end{aligned}
$$

a. Find the slope of the curve at $x=-1$. Show all your calculations using LIMITS.

$$
\begin{aligned}
& \text { ALT. }\left\{f^{\prime}(-1)=\lim _{x \rightarrow-1} \frac{f(x)-f(-1)}{x-(-1)}\right. \\
& =-3(-1)+4=7
\end{aligned}
$$

b. Write the equation of the tangent to the curve at $x=-1$.

$$
\begin{aligned}
f^{\prime}(-1) & =7 \\
f(-1) & =-1-3(-1)^{2} \\
& =-4
\end{aligned}
$$

c. Write the equation of the
Part 3: Chapter 3.1-3.5

1. On Earth, if you shoot a rubber band 64 feet straight up into the air, the rubber band will be $s(t)=64 t-16 t^{2}$ feet above your hand at t seconds after firing.
a) Find $v(t)$ and $a(t)$.

$$
\begin{aligned}
& v(t)=64-32 t \\
& a(t)=-32
\end{aligned}
$$

b) How long does it take the paper clip to reach its maximum height? (Use calculus methods.)

$$
\text { Let } \begin{array}{ll}
v=0 & 0=64-32 t \\
& t=2
\end{array}
$$

2 secs
c) With what velocity does it leave your hand?

$$
\begin{aligned}
& \text { city does it leave your hand? } \\
& \text { Let } t=0 \quad v(0)=64-32(0)=64
\end{aligned}
$$

$64 \mathrm{ft} / \mathrm{sec}$
d) Is the paper clip speeding up, slowing down, or the same speed at $t=1$ second? Justify.

$$
\begin{aligned}
v(1)= & 64-32(1)=32 \\
a(1)= & -32 \\
& \text { slowirs down }
\end{aligned}
$$

velocity and acceleration have opposite signs
2. The function $f(x)=x^{\frac{4}{5}}$ is not differentiable at $\mathrm{x}=0$. What type of non-differentiability is it?

1. For each limit below, draw a labeled diagram that illustrates the geometric interpretation of each definition of derivative at $x=3$. Write a sentence or two explaining each definition.

The fraction in each problem is the slope of the secant line containing the two labeled points. Using the limit, the
slopes of the secant lines will approach the slope of slopes of the secant lines will approach the slope of the tangent line, which is the derivative ($x=3$

