Conic Section Review

CIRCLE:

A quadratic equation whose <u>two</u> squared terms have coefficients which are <u>equal</u>.

Standard form:

$$A \times^2 + B \times + Cy^2 + Dy + E = OA = C$$

General form:

$$(x-h)^2+(y-k)^2=r^2$$

- Center is (h,k)

Parametric Equations:

ELLIPSE:

Standard form:

$$Ax^2 + Bx + Cy^2 + Dy + E = 0$$

A ≠ C

General form (horizontal):

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

a > 6

General form (vertical):

$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

a > 6

- Center is (h,k)
- Length of major axis is 2a
- Length of minor axis is 26
- Equation for finding foci is: _______

Parametric Equations (horizontal):

Parametric Equations (vertical):

HYPERBOLA:

A quadratic equation whose \underline{two} squared terms have coefficients which are $\underline{different}$ signs. (AC < 0)

Standard form:

$$Ax^2 + Bx - Cy^2 + Dy + E = 0$$

A, C one negative

General form (horizontal):

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

General form (vertical):

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

- Center is (h,k)
 Slope of asymptotes is to (hor.) or to (vert.)
- Equation for finding foci is: $c^2 = a^2 + b^2$

Parametric Equations (horizontal):

Parametric Equations (vertical):

Parabola:

A quadratic equation which has **one** squared term.

$$(AC=0, A=0 \text{ or } C=0)$$

function

Standard form: $Ax^2 + Bx + Dy + E = 0$

OR Cy 2 term

General form

$$(x-h)^2 = 4p(y-k)$$

Tup/down

Not a function

General form

$$(y-K)^2 = 4p(x-h)$$

- Vertex is
- · Focus is O away from verlex
- · Directrix is y = or y = (paway from Vertex)