\qquad Matrices

For 1-5, complete the matrix operation. If it is not possible, write "not possible". No Calculator.

1. $\left[\begin{array}{cccc}5 & 6 & 1 & 0 \\ 2 & -2 & 3 & 4 \\ 1 & 5 & -2 & 1\end{array}\right]-\left[\begin{array}{cccc}1 & 4 & -1 & 1 \\ -2 & 0 & 5 & 8 \\ 10 & -3 & 5 & 7\end{array}\right]=$
2. $4\left[\begin{array}{cc}3 & -1 \\ 2 & 4\end{array}\right]+\left[\begin{array}{cc}7 & 9 \\ -1 & 1\end{array}\right]=$
3. $\left[\begin{array}{l}4 \\ 5\end{array}\right]\left[\begin{array}{llll}5 & 3 & -1 & 2\end{array}\right]=$
4. $\left[\begin{array}{ccccc}3 & 2 & -1 & 0 & 4 \\ 5 & 9 & -2 & -3 & 5 \\ 1 & 0 & -4 & -1 & 3 \\ 7 & 8 & 1 & 2 & 4 \\ 0 & -3 & 4 & -3 & 1 \\ 8 & 10 & -2 & 1 & 4\end{array}\right]\left[\begin{array}{cc}3 & 5 \\ 4 & -1\end{array}\right]=$
5. $\left[\begin{array}{ccc}-1 & 2 & 0 \\ 4 & 1 & -2 \\ 3 & 7 & -1\end{array}\right]\left[\begin{array}{cc}-1 & 2 \\ 0 & 1 \\ 3 & 4\end{array}\right]=$

For 6-8, determine if the inverse of the matrix exists. If it does exist, find it! (\#6 and \#7 No Calculator, \#8 Calculator OK)
6. $\left[\begin{array}{ll}2 & -1 \\ 4 & -2\end{array}\right]$
7. $\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$
8. $\left[\begin{array}{ccc}4 & -1 & 3 \\ 2 & 1 & 4 \\ 5 & -2 & 0\end{array}\right]$
9. Explain in words how you would prove that two matrices are inverses of each other.
10. Explain in words what the "identity matrix" is.

For 11-13, solve the system of equations using matrices (Calculator OK). You must use each method at least once (Inverses and Reduced Row Echelon Form).
$2 x-3 y=-10$
11.
$x+2 y=16$

$$
\text { 12. } \begin{aligned}
& x+y+z=2 \\
& 2 x-3 y+z=-5 \\
& 3 x+2 y+4 z=3
\end{aligned}
$$

$x+y+z=-2$
13. $2 x+z=-1$
$3 y+3 z=-12$
14. Mrs. Billz has paper money in her wallet consisting of $\$ 1$ bills, $\$ 5$ bills, $\$ 10$ bills, and $\$ 20$ dollar bills. On Friday she had 19 total bills in her wallet that adds up to $\$ 125$. She also has one more $\$ 10$ bill than the total number of $\$ 5$ bills. The number of $\$ 20$ bills is equal to the number of $\$ 5$ bills minus the number of $\$ 1$ bills. How many of each type of bill does she have?
15. The Gaussians Math team has made it to State! After they compete at State, they take home a total of 10 trophies ($1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ place finishes in each event earns the team a trophy). The number of $1^{\text {st }}$ place trophies is the same as the number of $2^{\text {nd }}$ and $3^{\text {rd }}$ place trophies combined. Also, the number of $1^{\text {st }}$ place trophies is one less than twice the number of $2^{\text {nd }}$ place trophies. How many $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ place trophies do they take home?

