Precalculus
Section 9.1
Permutations and Combinations!
If you are arranging the letters A through G in the alphabet, how many different ways are there of doing this with no repetition?

Another way of saying this is

$$
\begin{aligned}
& \text { isis } 7 \text { 7! } \\
& \text { Seven factorial math } \rightarrow P R 0 B \rightarrow 4
\end{aligned}
$$

From these letters, how many 3 letter words can you make not repeating any letters?

$$
7 \times 6 \times 5=210 \quad 7 \text { letersototal }
$$

This is called a

$$
\begin{aligned}
& \text { B } C D E F G 76 \times 1 / 2, \\
& 7 \times 5 \times 5 \times 4 \times 2 \times 2 \times 15
\end{aligned}
$$

Notation:

order matters
Formula: $n P_{r}=\frac{n!}{(n-r)!}$

$$
\begin{aligned}
& n=\# \text { elements in } \mathrm{l} \\
& r=\# \text { elements assn }
\end{aligned}
$$

1. For my softball team, I have 15 players. How many different ways can I pick a pitcher, then a catcher, a shortstop and then a center fielder? (Order matters b / c it must be in this order!)

$$
{ }_{15} P_{4}=\frac{15!}{(15-4)!}=\frac{15!}{11!}=15 \cdot 14 \cdot 13 \cdot 12=32,760
$$

2. How many 5 letter "words" can I make from the letters in HINSDALE?

$$
\text { No repetition } P_{5}=\frac{8!}{(8-5)!}=\frac{8!}{3!}=8 \cdot 7.6 \cdot 5 \cdot 4=6720
$$

3. A permutation is selected at random from the letters MISSISSIPPI.
a) What is different about this word? Repetition

$$
4 \bar{I}^{\prime} s 4 S_{s}^{\prime} 2 \mathrm{P}_{\mathrm{s}}^{\prime}
$$

b) How many different ways are there of arrangingall the letters?

$$
\frac{11!}{4!4!2!}=34,650
$$

Permutations with Repetition

How many ways can 2 students from our class of 20 be chosen to go to the office?

$$
20: 19 \div 2=190 \text { order doesn't matter, so choosing }
$$

This is called a Combination. Choosing Allie then Alex.
Notation:

Formula: ${ }_{n} C_{r}=\frac{{ }_{n} P_{r}}{r!}=\frac{n!}{r!(n-r)!}$
4. In how many different ways can you form a committee of 5 people from a group of 9 people?

NOTE: Does order matter - permutation or combine dion?
No - just committee -not Pres, VP, etz.1

$$
\begin{aligned}
& { }_{9} C_{5}=\frac{9!}{5!(4!)}=\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1}=\frac{126}{\text { ways }} \\
& \text { OR } 9.6765 \div 5!\quad=n(s)
\end{aligned}
$$

5. A standard deck of playing cards has 52 cards. How many 5 -card poker hands can be dealt from the deck?

$$
C_{52}=\frac{52!}{5!(47!)}=25,98,960
$$

6. For the annual MathRules party, Mrs. D is buying treats! At the store, she finds 7 varieties of soda and 10 varieties of snacks. How many combinations of 3 soda options and 4 snack options are possible?

$$
{ }_{7} C_{3} \cdot{ }_{10} C_{4}=35 \cdot 210=7,350
$$

7. A standard deck has 4 suits of 13 cards each. The suits are hearts, diamonds, spades, and clubs. If 5 cards are drawn, how many different combinations of 2 hearts, 2 clubs, and 1 diamond are possible?

$$
{ }_{13} C_{2} \cdot{ }_{13} C_{2} \cdot{ }_{13} C_{1}=18 \cdot 18 \cdot 13=79,092
$$

Think about your gym lock...
should it be called a Locker Combination? Permutation! (order matters)

