Precalculus Section 9.1

Permutations and Combinations!

1. For my softball team, I have 15 players. How many different ways can I pick a pitcher, then a catcher, a shortstop and then a center fielder? (Order matters b/c it must be in this order!)

$$15^{P}_{4} = \frac{15!}{(15-4)!} = \frac{15!}{11!} = \frac{15!}{15\cdot 14\cdot 13\cdot 12} = 32,760$$

2. How many 5 letter "words" can I make from the letters in HINSDALE?

$$P_5 = \frac{8!}{(8-5)!} = \frac{8!}{3!} = 8.7.6.5.4 = 6720$$

- **3.** A permutation is selected at random from the letters **MISSISSIPPI.**
 - a) What is different about this word? Repetition 4 I's 45's 2 P's
 - b) How many different ways are there of arranging all the letters?

$$\frac{11!}{4!4!2!} = 34,650$$

How many ways can 2 students from our class of 20 be chosen to go to the office?

20	: 19 ÷ 2= 190	order	doesn't r	natter,	so choosine
			Alex th	en Allie	, is some as
This is calle	da <u>Combination</u>	•	Choosing	Allie 1	hen Alex.
Notation:	^C r				
Formula:	$nC_r = \frac{nP_r}{r!} =$	<u>n]</u> r!ln	-1)!		

4. In how many different ways can you form a committee of 5 people from a group of 9 people?

NOTE: Does order matter - permutation or combination?
No - guist committee - not Pres, VP, etc.!

$$q C_5 = \frac{q!}{5!(4!)} = \frac{9 \times 8 \times 7 \times 10}{4 \times 3 \times 2 \times 1} = \frac{120}{400}$$

 $R \underline{90} \underline{765} \div 5! = n(S)$

5. A standard deck of playing cards has 52 cards. How many 5-card poker hands can be dealt from the deck? $\int_{2}^{2} \int_{5}^{2} = \frac{52!}{5!(47!)} = 25,98,960$

6. For the annual MathRules party, Mrs. D is buying treats! At the store, she finds 7 varieties of soda and 10 varieties of snacks. How many combinations of 3 soda options and 4 snack options are possible?

 $C_3 \cdot C_4 = 35 \cdot 210 = 7350$

7. A standard deck has 4 suits of 13 cards each. The suits are hearts, diamonds, spades, and clubs. If 5 cards are drawn, how many different combinations of 2 hearts, 2 clubs, and 1 diamond are possible?

$$_{13}C_{2} \cdot C_{13}C_{1} = 78.78.13 = 79,092$$

Think about your gym lock...

 \mathcal{O}

Should it be called a Locker Combination? Permutation! (order watters)