Review: State how many triangles can be formed using the given information.

3) $\triangle C A R, c=16, r=15, m \angle R=36^{\circ}$
 $h=16 \sin 36=9.4$

$$
h<r<c
$$

$2 \Delta s$
2) $\triangle A B C, b=17, c=15, m \angle B=80^{\circ}$

4) $\triangle P Q R, p=3, q=6, m \angle R=44^{\circ}$


When you know 2 sides and a non-included angle of a triangle, you may have $\qquad$ _,
$\qquad$ . or 2 $\qquad$ triangles. An easy way to see which situation you have, and to solve the resulting triangles, is to use $\qquad$ Law of Cosines .

Reminder: Quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Can also graph Quadratic and find zeros.
Examples: Determine how many triangles can be created, and solve each of them.
5) In $\triangle A B C, \mathrm{a}=22, \mathrm{~b}=12, m \angle A=42^{\circ}$


$$
\begin{aligned}
22^{2} & =12^{2}+c^{2}-2(12)(c) \cos 42 \\
0 & =c^{2}-24 \cos 42 c-340 \\
c & =-11.56,29.40 \text { one } \Delta
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sin 42}{22}=\frac{\sin \angle B}{12} \\
& \angle B=21.4^{\circ}
\end{aligned} \angle C=116.6^{\circ}
$$

LC is biggest
6) In $\triangle X Y W, \mathrm{x}=4, \mathrm{y}=5, m \angle X=27^{\circ}$


ASS- Cosines
(1) $\frac{1 s t \text { Triangle }}{W}$

$$
\begin{aligned}
& 4^{2}=5^{2}+\omega^{2}-2(5)(\omega) \cos 27^{\circ} \\
& 0=\omega^{2}-(10 \cos 27) \omega+9 \\
& \omega=7.75,1.16 \leftarrow \text { both positue }-2 \Delta S!
\end{aligned}
$$


use Law of sines to find $\angle y$ :

$$
\begin{aligned}
\frac{\sin 27}{2} & =\frac{\sin y}{5} \\
\sin ^{-1} \quad 4 y & =34.6
\end{aligned}
$$

Subtract from $180^{\circ}$ to find ${ }^{\circ}$ :
$\angle \omega=118.4^{\circ}$

$$
\angle \omega=118.4^{\circ}
$$


7) In $\triangle A B C, \mathrm{a}=12, \mathrm{~b}=31, m \angle A=20.5^{\circ}$


$$
\begin{aligned}
& 12^{2}=30.5^{\circ} \\
& 11^{2}+c^{2}-2(31)(c) \cos 20.5
\end{aligned}
$$

Subtract from $180^{\circ}$ to find $2 y$ :

$$
0=c^{2}-62 \cos 20.5 c+817
$$

No $\triangle$ possible!

$$
L y=145.4^{\circ}
$$

$$
c=-6.78,-35
$$

