AB Calculus AB 4.5 - Linearization, Differentials, and Tolerance Review

1) a) Find the linearization, $L(x)$, of $f(x)=x^{3}-3 x^{2}+2 x+1$ at $x=2$.

$$
\begin{aligned}
& f(2)=1 \quad \text { pt }(2,1) \\
& f^{\prime}(x)=3 x^{2}-6 x+2 \\
& f^{\prime}(2)=2(2)^{2}-6(2)+2=2 \quad \text { slope }=2
\end{aligned}
$$

$$
\begin{aligned}
& 1 \text { at } x=2 \\
& y-1=2(x-2) \\
& \frac{L(x)=1+2(x-2)}{} \begin{array}{l}
\text { or } L(x)=2 x-3
\end{array}
\end{aligned}
$$

b) Use $L(x)$ to estimate $f(1.98)$.

$$
f(1.98) \approx L(1.98)=1+2(1.98-2)=.96
$$

c) What is the exact value of $f(1.98)$?

$$
f(1.98)=.961192
$$

d) What is the approximation error?

$$
\begin{aligned}
& \text { What is the approximation error? } \\
& 1.96-.961192 \mid=.001192 \text { (less than } 10^{-2} \text {) }
\end{aligned}
$$

2) Consider the function $y=\ln \left(x^{2}+2\right)$
a) find the differential $d y \frac{d y}{d x}=\frac{1}{\left(x^{2}+\right.}$
b) Evaluate $d y$ for $x=3$ and $d x=0.02$

$$
d y=\frac{2(3)(.02)}{(3)^{2}+2}=.01 \overline{09} \approx .011
$$

3) A box has a square base and its height is three times the length of its base edge (x), giving the box volume and surface area equations of:

$$
\begin{array}{ll}
V=3 x^{3} & S A=14 x^{2} \\
\frac{d V}{d x}=9 x^{2} & \frac{d A}{d x}=28 x
\end{array}
$$

a) Write a differential formula that estimates the change in volume when x changes from a to $a+d x \quad d V=9 a^{2} d x$
b) Using your formula, what would the change in volume be if x changes from 10 inches to 10.05 inches? $a=x=10 \quad d v=9(10)^{2}(.05)=45 \mathrm{in}^{3}$
c) Repeat (a) and (b) for surface area

$$
[A A=28 a d x \quad A=28(10) .005)=14 \text { in }^{2}
$$

