Tuesday, November 21, 2016

Notes - Estimating Roots w/Linearization,

Differentials

HW Questions

Use Linearization to Estimate a root.

(1)
$$\sqrt{101}$$
 $\alpha = 100$ $f(x) = \sqrt{x}$ > write linearization at $\alpha = 100$

point:
$$(100, 10)$$
 $f(100) = \sqrt{100} = 10$

Slope:
$$f'(x) = \frac{1}{2}x^{\frac{1}{2}}$$

 $f'(100) = \frac{1}{2}x^{\frac{1}{2}}$

tangent
$$y - 10 = \frac{1}{20}(x - 100)$$

Ineviron
$$(X) = \frac{1}{20}(X-100) + 10$$

 $L(101) = \frac{1}{20}(101-100) + 10 = |020 = |0.05$

HOW accurate? JIOI = 10.04988 $Error = |10.05 - 10.04988| = 1.24 \times 10^{-4}$ Error less than 10-3

(2)
$$\sqrt[3]{26}$$
 $a = 27$ $f(x) = 31x$

$$a=27$$
 $f(x)=3/X$

point (27,3)
slope =
$$f'(x) = \frac{1}{3}x^{-\frac{2}{3}}$$

 $f'(27) = \frac{1}{3}(27)^{-\frac{2}{3}} = \frac{1}{3} \cdot \frac{1}{9} = \frac{1}{27}$

 $\tan \ln e: y-3=\frac{1}{27}(x-27)$

lin' $L(x) = \frac{1}{27}(x-27) + 3$

 $L(26) = \frac{1}{27}(26-27) + 3 = 2\frac{36}{27} \approx 2.963$

actual Value: $3\sqrt{26} \approx 2.962$ Error: 4.67 X10⁻⁴ less than 10^{-3}

Differentials: Leibnitz Notation dy

 $\frac{dy}{dx} = \frac{1}{3} \frac{\text{differentials infinitely small increments}}{\text{in } x - \text{or } y - \text{direction}}$

df = dy = f'(x)dx $\begin{vmatrix} df = dy \\ bc f(x) = y \end{vmatrix}$

Find dy if $y = x \ln x$, x = 1 and dx = .01 dy = f(x) $dy = (1 + \ln x) dx$ $dy = (1 + \ln 1)(.01)$ dx = .01 dx = .01dy = .01