Solve that Triangle!!!!!

Use the procedures we learned in class to solve the following triangles and find the Area. Good Luck! ©

1.
$$\triangle ABC = 4, b = 5$$
 and $\triangle C = 61^{\circ}20'$
 $\triangle ABC = 4, b = 5$ and $\triangle C = 61^{\circ}20'$
 $\triangle ABC = 4, b = 5$ and $\triangle C = 41^{\circ}20'$
 $\triangle ABC = 4, b = 5$ and $\triangle C = 41^{\circ}20'$
 $\triangle ABC = 4, b = 5$
 $\triangle ABC = 4, b = 15$
 $\triangle ABC$

3.
$$\triangle ABC$$
 $c = 60$ $\angle A = 143^{\circ}$ $\angle B = 8^{\circ}$

ASA $\angle C = 29^{\circ}$

B $= \frac{1}{2}$ (60)(74.48)sin8

 $b = \frac{1}{2}$
 $= (310.97)$
 $b = 1$

$$\frac{\sin 8}{b} = \frac{\sin 29}{60}$$
 $b = \frac{40\sin 8}{\sin 29}$
 $b = 17.22$

$$\frac{\sin 143}{a} = \frac{\sin 29}{60}$$

$$a = \frac{60 \sin 143}{\sin 29}$$

$$\sqrt{a} = 74.48$$

4.
$$\triangle ABC$$
 $\alpha = 6$ $b = 9$ $\angle A = 34^{\circ}$

SSA - Cosines

Cuse

Cuse

Cuse

Cosines

4°
$$6^2 = c^2 + 9^2 - 2(9)(c) \cos 34^\circ$$
 $0 = c^2 - 18 \cos 34 c + 45$
 $c = (10.73)(4.19)$

4.19/34 9 2 C is smaller than 2 B

Sin34 =
$$\frac{\sin^2 C}{6}$$

Sin = $\frac{4.19}{6}$
 $\frac{4.19}{6}$

Sin = $\frac{4.19}{6}$
 $\frac{4.19}{6}$

Area = $\frac{1}{2}(4.19)(9)\sin^2 4$

= $\frac{10.54}{6}$