Monday, November 21, 2016

Chapter 5.5 - 5.6, 9.2

Section 5.5 - Linearization

New Seats

New Calendar

Opener - Half Sheet w/New Partner

Notes

5.5 - Linearization

If a curve a differentiable, then it is "locally linear." So the equation the tangent line to the curve approximates the curve rear the point of tangency.

Linearization:

L(x) = f(a) + f'(a)(x-a)(just equation of tangent line solved for y)
is the linearization of fat a. $f(x) \sim L(x)$ x = a is the center of approximation.

Examples

(1) $f(x) = \sqrt{1-x}$ at x = 0, How accurate is approx. at x = 0?

slope: $f'(x) = \frac{1}{2}(1-x)^{\frac{1}{2}}(-1)$ $f'(0) = \frac{1}{2}(1-0)^{\frac{1}{2}}(-1)$ $= -\frac{1}{2}$ tanget: $y-1 = -\frac{1}{2}(x-0)$ Linearization: $y = L(x) = -\frac{1}{2}(x) + 1$ approx: L(.1) = 21.011 = .95

actual: f(-1) = .949

Error less that 10-2