Friday, Oct ober 14, 2016
4.4 - Derivatives of Exponents and Logs 4.4 Practice Problems NO Homework Weekend! :)
**NO Late Start on Monday!!!

4.4 Exponential a Log Derivatives!

$y=\ln x \Longleftrightarrow e^{y}=x \quad \begin{gathered}\text { change to exponential } \\ \text { found }\end{gathered}$ $e^{y} \cdot \frac{d y}{d x}=1$ take derivative
$\frac{d y}{d x}=\frac{1}{e^{y}} \quad$ Solve for $\frac{d y}{d x}$
$\frac{d y}{d x}=\frac{1}{x} \quad$ Substitute for e^{y}
(2) $\frac{d}{d x} \ln x=\frac{1}{x}$

$$
\frac{\bar{x}]}{\left[\frac{d}{d x} \ln u=\frac{1}{a} \cdot \frac{d u}{d x}\right]}
$$

$f(x)$	$f^{\prime}(x)$	power of $f^{\prime}(x)$
x^{3}	$3 x^{2}$	2
x^{2}	$2 x$	1
x	1	0
1	0	0

Examples
(1)

$$
\begin{aligned}
& y=2 e^{4 x} \quad \text { find } y^{\prime} \\
& y^{\prime}=2 \cdot e^{4 x} \cdot 4=8 e^{4 x}
\end{aligned}
$$

(2) $y=5 e^{x^{2}} \quad$ find y^{\prime}

$$
y^{\prime}=5 \cdot e^{x^{2}} \cdot 2 x=10 x e^{x^{2}}
$$

(3)

$$
\begin{aligned}
& y=\ln (3 x) \quad \text { find } y^{\prime} \quad \begin{array}{c}
\ln 3+\ln x \\
0+\frac{1}{x}
\end{array} \\
& y^{\prime}=\frac{1}{(3 x)} \cdot 3=\frac{1}{x}
\end{aligned}
$$

(4) $y=\log _{5} x \quad$ find y^{\prime}
change of base $y=\frac{\ln x}{\ln 5}=\frac{1}{\ln 5} \cdot \ln x$

$$
y^{\prime}=\frac{1}{\ln 5} \cdot \frac{1}{x}=\frac{1}{x \ln 5}
$$

(5)

$$
\begin{aligned}
& y=\log _{3} x^{2} \\
& y=\frac{\ln x^{2}}{\ln 3}=\frac{1}{\ln 3} \cdot \ln x^{2} \\
& y^{\prime}=\frac{1}{\ln 3} \frac{1}{x^{2}} \cdot 2 x=\frac{2}{x \ln 3}
\end{aligned}
$$

Exponential other than $y=e^{x}$
x raid $d y \quad(n=r \operatorname{mos} \tan t)$

$$
y=a^{x} \quad \text { find } \frac{d y}{d x} \quad(a=\text { constant })
$$

$\ln (y)=\ln \left(a^{x}\right)$ take $\ln ()$ of both sides
$\ln y=x \ln _{\text {constant }}$ property of $\log s$
$\frac{1}{y} \cdot \frac{d y}{d x}=\ln a<$ take derivature
$\frac{d y}{d x}=y \ln a$ solve for $\frac{d y}{d x}$

$$
\frac{d y}{d x}=a^{x} \ln a
$$

(3) $\frac{d}{d x} a^{x}=a^{x} \ln a$

$$
\begin{aligned}
& {\left[\frac{d}{d x} a^{u}=a^{u} \ln a \cdot \frac{d u}{d x}\right]} \\
& \text { chain Rule }
\end{aligned}
$$

Examples
(6) $y=5^{x^{2}}$ find y^{\prime}

$$
y^{\prime}=5^{x^{2}} \cdot \ln 5 \cdot 2 x
$$

(7) $y=3^{2 x^{2}+7 x}$ find y^{\prime}

$$
\begin{aligned}
& y=3 \quad \text { find } y \\
& y^{\prime}=3^{2 x^{2}+7 x} \cdot \ln 3 \cdot(4 x+7)
\end{aligned}
$$

(8)

$$
\begin{aligned}
& y=\log \sqrt{x} \\
& y=\frac{\ln \sqrt{x}}{\ln 10}=\frac{1}{\ln 10^{\circ}} \ln \sqrt{x}
\end{aligned}
$$

$$
\begin{aligned}
y^{\prime}=\frac{1}{\ln 10} \cdot \frac{1}{\sqrt{x}} \cdot \frac{1}{2} x^{-\frac{1}{2}} & =\frac{1}{\ln 10} \cdot \frac{1}{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}} \\
& =\frac{1}{2 x \ln 10}
\end{aligned}
$$

