7.
$$\csc \frac{\pi}{4} = \sqrt{2}$$

8.
$$\sec \frac{\pi}{2} = 2$$

9. Using a right triangle with hypotenuse 13 and legs 5 (opposite) and
$$\sqrt{13^2 - 5^2} = 12$$
 (adjacent), we have $\sin \theta = \frac{5}{13}$, $\cos \theta = \frac{12}{13}$, $\tan \theta = \frac{5}{12}$; $\csc \theta = \frac{13}{5}$, $\sec \theta = \frac{13}{12}$, $\cot \theta = \frac{12}{5}$.

10. Using a right triangle with hypotenuse 17 and legs 15 (adjacent) and
$$\sqrt{17^2 - 15^2} = 8$$
 (opposite), we have $\sin \theta = \frac{8}{17}$, $\cos \theta = \frac{15}{17}$, $\tan \theta = \frac{8}{15}$; $\csc \theta = \frac{17}{8}$, $\sec \theta = \frac{17}{15}$, $\cot \theta = \frac{15}{8}$.

Section 4.3 Exercises

- The 450° angle lies on the positive y-axis
 (450° 360° = 90°), while the others are all
 coterminal in Quadrant II.
- 2. The $-\frac{5\pi}{3}$ angle lies in Quadrant I $\left(-\frac{5\pi}{3} + 2\pi = \frac{p}{3}\right)$, while the others are all coterminal in Quadrant IV.

In #3–12, recall that the distance from the origin is $r = \sqrt{x^2 + y^2}$.

3.
$$\sin \theta = \frac{2}{\sqrt{5}}$$
, $\cos \theta = -\frac{1}{\sqrt{5}}$, $\tan \theta = -2$; $\csc \theta = \frac{\sqrt{5}}{2}$, $\sec \theta = -\sqrt{5}$, $\cot \theta = -\frac{1}{2}$.

4.
$$\sin \theta = -\frac{3}{5}$$
, $\cos \theta = \frac{4}{5}$, $\tan \theta = -\frac{3}{4}$; $\csc \theta = -\frac{5}{3}$, $\sec \theta = \frac{5}{4}$, $\cot \theta = -\frac{4}{3}$.

5.
$$\sin \theta = -\frac{1}{\sqrt{2}}, \cos \theta = -\frac{1}{\sqrt{2}}, \tan \theta = 1; \csc \theta = -\sqrt{2},$$

 $\sec \theta = -\sqrt{2}, \cot \theta = 1.$

6.
$$\sin \theta = -\frac{5}{\sqrt{34}}, \cos \theta = \frac{3}{\sqrt{34}}, \tan \theta = -\frac{5}{3};$$

 $\csc \theta = -\frac{\sqrt{34}}{5}, \sec \theta = \frac{\sqrt{34}}{3}, \cot \theta = -\frac{3}{5}.$

7.
$$\sin \theta = \frac{4}{5}, \cos \theta = \frac{3}{5}, \tan \theta = \frac{4}{3}; \csc \theta = \frac{5}{4},$$

 $\sec \theta = \frac{5}{3}, \cot \theta = \frac{3}{4}.$

8.
$$\sin \theta = -\frac{3}{\sqrt{13}}$$
, $\cos \theta = -\frac{2}{\sqrt{13}}$, $\tan \theta = \frac{3}{2}$.
 $\csc \theta = -\frac{\sqrt{13}}{3}$, $\sec \theta = -\frac{\sqrt{13}}{2}$, $\cot \theta = \frac{2}{3}$.

- sin θ = 1, cos θ = 0, tan θ undefined; csc θ = 1, sec θ undefined, cot θ = 0.
- 10. sin θ = 0, cos θ = -1, tan θ = 0; csc θ undefined, sec θ = -1, cot θ undefined.

11.
$$\sin \theta = -\frac{2}{\sqrt{29}}, \cos \theta = \frac{5}{\sqrt{29}}, \tan \theta = -\frac{2}{5}$$

 $\csc \theta = -\frac{\sqrt{29}}{2}, \sec \theta = \frac{\sqrt{29}}{5}, \cot \theta = -\frac{5}{2}$

12.
$$\sin \theta = -\frac{1}{\sqrt{2}}, \cos \theta = \frac{1}{\sqrt{2}}, \tan \theta = -1;$$

 $\csc \theta = -\sqrt{2}, \sec \theta = \sqrt{2}, \cot \theta = -1.$

For #13–16, determine the quadrant(s) of angles with the given measures, and then use the fact that $\sin t$ is positive when the terminal side of the angle is above the x-axis (in Quadrants I and II) and $\cos t$ is positive when the terminal side of the angle is to the right of the y-axis (in quadrants I and IV). Note that since $\tan t = \sin t/\cos t$, the sign of $\tan t$ can be determined from the signs of $\sin t$ and $\cos t$: If $\sin t$ and $\cos t$ have the same $\sin t$, the answer to (c) will be "+"; otherwise it will be "-". Thus $\tan t$ is positive in Quadrants I and III.

- 13. These angles are in Quadrant I. (a) + (i.e., $\sin t > 0$). (b) + (i.e., $\cos t > 0$). (c) + (i.e., $\tan t > 0$).
- 14. These angles are in Quadrant II. (a) +. (b) -. (c) -.
- 15. These angles are in Quadrant III. (a) -. (b) -. (c) +.
- These angles are in Quadrant IV. (a) -. (b) +. (c) -.

For #17-20, use strategies similar to those for the previous problem set.

- 17. 143° is in Quadrant II, so cos 143° is negative.
- 18. 192° is in Quadrant III, so tan 192° is positive.
- 19. $\frac{7\pi}{8}$ rad is in Quadrant II, so $\cos \frac{7\pi}{8}$ is negative.
- 20. $\frac{4\pi}{5}$ rad is in Quadrant II, so $\tan \frac{4\pi}{5}$ is negative.

21. (a) (2,2); tan
$$45^{\circ} = \frac{y}{x} = 1 \Rightarrow y = x$$
.

22. (b)
$$(-1, \sqrt{3})$$
; $\tan \frac{2\pi}{3} = \frac{y}{x} = -\sqrt{3} \cdot \frac{2\pi}{3}$ is in Quadrant II, so x is negative.

23. (a)
$$(-\sqrt{3}, -1)$$
; $\frac{7\pi}{6}$ is in Quadrant III, so x and y are both negative. $\tan \frac{7\pi}{6} = \frac{1}{\sqrt{3}}$.

24. (b)
$$(1, -\sqrt{3})$$
; -60° is in Quadrant IV, so x is positive while y is negative. tan $(-60^{\circ}) = -\sqrt{3}$.

For #25-36, recall that the reference angle is the acute angle formed by the terminal side of the angle in standard position and the r-axis.

25. The reference angle is 60°. A right triangle with a 60° angle at the origin has the point P(-1, √3) as one vertex,

with hypotenuse length
$$r = 2$$
, so $\cos 120^{\circ} = \frac{x}{r} = -\frac{1}{2}$.

26. The reference angle is 60°. A right triangle with a 60° angle at the origin has the point $P(1, -\sqrt{3})$ as one vertex, so $\tan 300° = \frac{y}{x} = -\sqrt{3}$.

- 27. The reference angle is the given angle, $\frac{\pi}{3}$. A right triangle with a $\frac{\pi}{2}$ radian angle at the origin has the point $P(1, \sqrt{3})$ as one vertex, with hypotenuse length r = 2, so $\sec\frac{\pi}{3} = \frac{r}{v} = 2.$
- 28. The reference angle is $\frac{\pi}{4}$. A right triangle with a $\frac{\pi}{4}$ radian angle at the origin has the point P(1, 1) as one vertex, with hypotenuse length $r = \sqrt{2}$, so $\csc \frac{3\pi}{4} = \frac{r}{v} = \sqrt{2}$.
- 29. The reference angle is $\frac{\pi}{6}$ (in fact, the given angle is coterminal with $\frac{\pi}{6}$). A right triangle with a $\frac{\pi}{6}$ radian angle at the origin has the point $P(\sqrt{3}, 1)$ as one vertex, with hypotenuse length r = 2, so $\sin \frac{13\pi}{6} = \frac{y}{x} = \frac{1}{3}$
- 30. The reference angle is $\frac{\pi}{3}$ (in fact, the given angle is coterminal with $\frac{\pi}{3}$). A right triangle with a $\frac{\pi}{2}$ radian angle at the origin has the point $P(1, \sqrt{3})$ as one vertex, with hypotenuse length r = 2, so $\cos \frac{7\pi}{2} = \frac{x}{1} = \frac{1}{2}$
- 31. The reference angle is $\frac{\pi}{4}$ (in fact, the given angle is coterminal with $\frac{\pi}{4}$). A right triangle with a $\frac{\pi}{4}$ radian angle at the origin has the point P(1, 1) as one vertex, so $\tan \frac{-15\pi}{4} = \frac{y}{x} = 1$.
- 32. The reference angle is $\frac{\pi}{4}$. A right triangle with a $\frac{\pi}{4}$ radian angle at the origin has the point P(-1, -1) as one vertex, so $\cot \frac{13\pi}{4} = \frac{x}{y} = 1$.

33.
$$\cos \frac{23\pi}{6} = \cos \frac{11\pi}{6} = \frac{\sqrt{3}}{2}$$

34.
$$\cos \frac{17\pi}{4} = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

35.
$$\sin \frac{11\pi}{3} = \sin \frac{5\pi}{3} = -\frac{\sqrt{3}}{2}$$

36.
$$\cot \frac{19\pi}{6} = \cot \frac{7\pi}{6} = \sqrt{3}$$

- 37. -450° is coterminal with 270°, on the negative y-axis. (a) -1 (b) 0 (c) Undefined
- 38. -270° is coterminal with 90°, on the positive y-axis. (a) 1 (b) 0 (c) Undefined
- 39. 7π radians is coterminal with π radians, on the negative x-axis. (a) 0 (b) -1 (c) 0
- 40. $\frac{11\pi}{2}$ radians is coterminal with $\frac{3\pi}{2}$ radians, on the negative y-axis. (a) -1 (b) 0 (c) Undefined

- 41. $\frac{-7\pi}{2}$ radians is coterminal with $\frac{\pi}{2}$ radians, on the positive y-axis. (a) 1 (b) 0 (c) Undefined
- 42. -4π radians is coterminal with 0 radians, on the positive x-axis. (a) 0 (b) 1 (c) 0
- 43. Since $\cot \theta > 0$, $\sin \theta$ and $\cos \theta$ have the same sign, so $\sin \theta = +\sqrt{1 \cos^2 \theta} = \frac{\sqrt{5}}{3}$, and $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{5}}{2}$.

 44. Since $\tan \theta < 0$, $\sin \theta$ and $\cos \theta$ have opposite signs,
- so $\cos \theta = -\sqrt{1 \sin^2 \theta} = -\frac{\sqrt{15}}{4}$, and $\cot \theta = \frac{\cos \theta}{\sin \theta} = -\sqrt{15}.$
- 45. $\cos \theta = +\sqrt{1-\sin^2 \theta} = \frac{\sqrt{21}}{5}$, so $\tan \theta = \frac{\sin \theta}{\cos \theta}$ $=-\frac{2}{\sqrt{21}}$ and $\sec \theta = \frac{1}{\cos \theta} = \frac{5}{\sqrt{21}}$
- 46. $\sec \theta$ has the same sign as $\cos \theta$, and since $\cot \theta > 0$, $\sin \theta$ must also be negative. With x = -3, y = -7, and $r = \sqrt{3^2 + 7^2} = \sqrt{58}$, we have $\sin \theta = -\frac{7}{\sqrt{58}}$ and
- 47. Since $\cos \theta < 0$ and $\cot \theta < 0$, $\sin \theta$ must be positive. With x = -4, y = 3, and $r = \sqrt{4^2 + 3^2} = 5$, we have $\sec \theta = -\frac{5}{4}$ and $\csc \theta = \frac{5}{2}$
- 48. Since $\sin \theta > 0$ and $\tan \theta < 0$, $\cos \theta$ must be negative. With x = -3, y = 4, and $r = \sqrt{4^2 + 3^2} = 5$, we have $\csc \theta = \frac{5}{4}$ and $\cot \theta = -\frac{3}{4}$.
- **49.** $\sin\left(\frac{\pi}{6} + 49,000\pi\right) = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$
- 50. $\tan (1,234,567\pi) \tan (7,654,321\pi)$ = $\tan (\pi) \tan (\pi) = 0$
- **51.** $\cos\left(\frac{5,555,555\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) = 0$
- 52. $\tan\left(\frac{3\pi 70,000\pi}{2}\right) = \tan\left(\frac{3\pi}{2}\right)$
- 53. The calculator's value of the irrational number π is necessarily an approximation. When multiplied by a very large number, the slight error of the original approximation is magnified sufficiently to throw the trigonometric functions off.
- 54. sin t is the y-coordinate of the point on the unit circle after measuring counterclockwise t units from (1,0). This will repeat every 2π units (and not before), since the distance around the circle is 2π .

55.
$$\mu = \frac{\sin 83^{\circ}}{\sin 36^{\circ}} \approx 1.69$$

56.
$$\sin \theta_2 = \frac{\sin 42^\circ}{1.52} \approx 0.44$$

- 57. (a) When t = 0, d = 0.4 in.
 - **(b)** When t = 3, $d = 0.4e^{-0.6} \cos 12 \approx 0.1852$ in.