Section 3.6
Name
Annuities Problems
Future Value/Present Value
An annuity is a sequence of equal periodic payments. The annuity of ordinary deposits are made at the end of each period at the same time the interest is posted in the account.

LOANS AND MORTGAGES - PRESENT VALUE
An annuity is a sequence of periodic payments. The net amount of money put into an annuity is its PRESENT VALUE. The net amount returned from the annuity is its FUTURE VALUE.

$$
\begin{aligned}
& P V=R \frac{1-(1+i)^{-n}}{i} \\
& \text { av= present value (ant of loan) }
\end{aligned}
$$

$$
\begin{aligned}
& t=\text { time in yrs } n=\text { number of payments }=K t \\
& A P R=\text { annual percentage rate }
\end{aligned}
$$

$$
p V=18,500-2000 \text { ? ? } \quad t=4
$$

1) Chucky purchases a new pick-up truck for $\$ 18,500$. What are the monthly payments for a 4-year

$$
\begin{aligned}
& \text { loan with \$2000 down payment if the annual interest rate (APR) is } 2.9 \% . \mathrm{K}=12 \\
& 16,500=h \frac{1\left(1+\frac{129}{12}\right)^{2}}{\frac{.029}{12}} \\
& 16,500=R(45.27) \\
& R=\$ 364.49 \\
& \text { How much interest } \\
& \text { does he pay over life of } \\
& \begin{aligned}
& \text { loan? } R n=\$ 17,495.52 \\
&-16500 \\
& \$ 995.52
\end{aligned}
\end{aligned}
$$

pl
2) Gilda obtains a 30-year mortgage of $\$ 286,000$ with an $A P R$ of 4.75%. What is her monthly payment?

$$
\begin{aligned}
286,000 & =R \frac{1-\left(1+\frac{.0475}{2}\right)^{-360}}{\frac{.0775}{12}} \\
286,000 & =R(191.70) \\
R & =\$ 1491.91
\end{aligned}
$$

So, the total value of the investment returned from the annuity consists of all the periodic payments together with all the interest. This value is called the FUTURE VALUE of the annuity because it is typically calculated when projecting into the future - $^{-}$.

FUTURE VALUE OF AN ANNUITY:

$$
F V=R \frac{(1+i)^{n}-1}{i}
$$

$\mathrm{rV}=$ = untur value
$\mathrm{R}=$ mon thy payments
$\cdots=$ interest rate per period $i=\frac{A P R}{K}$
$n=$ number of payments $n=k t$
$R=500$
3) At the end of each quarter year, Rod makes a $\$ 500$ payment into the Lanagham Mutual Fund. If his investments earn 7.88% annual interest compounded quarterly, what will be the value of Rod's annuity in 20 years? APR
4) Bubba contributes $\$ 50$ per month into the Lincoln National Bond Fund that earns 7.26% annual interest compounded monthly What is the value of Bubba's investment after 25 years?

$$
\begin{aligned}
& i=\frac{.0726}{12} \quad n=12(25)=300 \\
& F V=50 \frac{\left(1+\frac{.0726}{12}\right)^{300}-1}{\frac{.0726}{12}}
\end{aligned}
$$

$$
t
$$

$$
=\overline{942,211.46}
$$

extra unions :

$$
\begin{aligned}
& 50(300)=15,000 \\
& 42,211-15,000=\$ 27,211
\end{aligned}
$$

$$
\begin{aligned}
& i=\frac{.0788}{4} \quad n=20(4)=80 \\
& F V=500 \frac{\left(1+\frac{.0788}{4}\right)^{80}-1}{\frac{0788}{4}} \\
& 95,483.39 \\
& \text { How much } \\
& \text { extra does he } \\
& \begin{array}{l}
\text { make, besides what } 50(80)=40,000 \\
\text { he contributes? }
\end{array} \\
& \text { 95,483-40,200 = } 55,483
\end{aligned}
$$

ANNUAL PERCENTAGE YIELD (APY):
How can you tell the difference if one bank offers an investment earning 8.75\% annual interest compounded quarter or one earning 8.7% compounded monthly?

A common basis for comparing investments is the annual percentage yield (APY) - the percentage rate that, compounded annually, would yield the same return as the given interest rate for the given compounding period.
5) Ursula invests $\$ 2000$ with Crabby Key Bank at 5.15% annual interest compounded quarterly. What is the equivalent APY?

Let $\mathrm{x}=$ the APY

The value of the investment at the end of one year is: $A=2000(1+x)$ (Recall, $\left.A=P\left(1+\frac{r}{k}\right)^{k t}\right)$

$$
A=2000(1+x)=2000\left(1+\frac{0515}{4}\right)^{4}
$$

$$
1+x=\left(1+\frac{\left.\cdot \frac{51515}{4}\right)^{4}}{}\right.
$$

$$
x=\left(1+\frac{.0515}{4}\right)^{4}-1=.0525
$$

$$
A P Y=5.259
$$

