Section 3.6 Annuities Problems Future Value/Present Value Name _____

An **annuity** is a sequence of equal periodic payments. The annuity of ordinary deposits are made at the end of each period at the same time the interest is posted in the account.

LOANS AND MORTGAGES – PRESENT VALUE

An annuity is a sequence of periodic payments. The net amount of money put into an annuity is its **PRESENT VALUE.** The net amount returned from the annuity is its **FUTURE VALUE.**

$$PV = R \frac{1 - (1 + i)^{-n}}{i}$$

$$PV = Present Value (ant of loan)$$

$$K_{z} # trives compounded
Per year $**i = interest rase per period$

$$R = monthly payment
t = trine in yrs n = number of payments = Kt
APR = annual percentage rate
PV = [8,500 - 200];
PV = [10,500 - 200];
PV = [10$$$$

So, the total value of the investment returned from the annuity consists of all the periodic payments together with all the interest. This value is called the **FUTURE VALUE** of the annuity because it is typically calculated when projecting into the future O.

FUTURE VALUE OF AN ANNUITY:

$$FV = R \frac{(1+i)^n - 1}{i}$$

$$FV = \frac{f_{uv} uv}{R} = \frac{f_{uv} uv}{R} \frac{value}{R}$$

$$R = \frac{mon_{u}}{Mu} \frac{payments}{payments}$$

$$r_{i} = \frac{APP}{R}$$

$$r_{i} = \frac{mon_{u}}{Mu} \frac{payments}{r_{i} = 0} = \frac{APP}{R}$$

$$r_{i} = \frac{mon_{u}}{Mu} \frac{payments}{r_{i} = 0} = \frac{APP}{R}$$

$$r_{i} = \frac{mon_{u}}{Mu} \frac{payments}{r_{i} = 0} = \frac{APP}{R}$$

$$r_{i} = \frac{AP}{R}$$

$$r_{i}$$

ANNUAL PERCENTAGE YIELD (APY):

How can you tell the difference if one bank offers an investment earning 8.75% annual interest compounded quarterly or one earning 8.7% compounded monthly?

A common basis for comparing investments is the **annual percentage yield (APY)** – the percentage rate that, compounded annually, would yield the same return as the given interest rate for the given compounding period.

こと

5) Ursula invests \$2000 with Crabby Key Bank at 5.15% annual interest compounded quarterly. What is the equivalent APY?

Let x =the APY

The value of the investment at the end of one year is: A = 2000(1 + x)(Recall, A = P(1 + x)

$$A = 2000(1+x) = 2000(1+\frac{0515}{4})'$$
$$1+x = (1+\frac{0515}{4})''$$
$$X = (1+\frac{0515}{4})'' - 1 = .0525$$
$$(APY = 5.25\%)'$$

6) Determine which investment listed at the top of the page has a higher APY.

r=8.75% r = 8.7%nonshly Quarterly $A = R(1+x) = R(1 + \frac{0875}{4})$ $A = R(1+x) = R(1+\frac{.087}{12})$ $x = \left(1 + \frac{087}{12}\right)^{12} - 1$ x = 09055090 062A