Friday, 11/11, 2016
Opener - Finish Properties of Logs Activity from yesterday 3.5 Solving Log and Exponential Equations

Have a great weekend!
log•a•rithm

early 17 th century: from modern Latin logarithmus, from Greek logos 'reckoning, ratio' + arithmos 'number.'
3.5 Solving Exponential and Logarithmic Equations

$$
\text { (1) } \begin{aligned}
8^{x} & =2^{x+1} \\
\left(2^{3}\right)^{x} & =2^{x+1}
\end{aligned}
$$

No call
Get Bases
the same
Base.
Gosmal
Go tome
(3)

$$
\begin{aligned}
& 5^{2 x}=\left(\frac{1}{25}\right)^{x+1} \\
& 5^{2 x}=(5)^{-2(x+1)} \\
& 2 x=-2(x+1) \\
& 2 x=-2 x-2 \\
& 4 x=-2 \\
& x=-\frac{1}{2}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \frac{20}{20}\left(\frac{1}{2}\right)^{\frac{x}{3}}=\frac{5}{20} \\
& \left(\frac{1}{2}\right)^{\frac{x}{3}}=\frac{1}{4} \\
& \left(\frac{1}{2}\right)^{\frac{x}{3}}=\left(\frac{1}{2}\right)^{2} \\
& \frac{x}{3}=2 \frac{x=6}{x-1}
\end{aligned}
$$

(4)

$$
\begin{aligned}
81^{\frac{x}{3}} & =\left(\frac{1}{27}\right)^{x-1} \\
\left(3^{4}\right)^{3 x} & =\left(3^{-3(x-1)}\right. \\
12 x & =-3 x+3 \\
15 x & =3 \\
x & =\frac{1}{5}
\end{aligned}
$$

Log Equations - No Call

* Change to Exponential Form
(1) $\log _{6}(4 x+12)=2$
(2) $\log _{2}(4 x-4)=5$
exp. form: $6^{2}=4 x+12$

$$
\begin{aligned}
2^{5} & =4 x-4 \\
32 & =4 x-4 \\
36 & =4 x \\
9 & =x
\end{aligned}
$$

