Friday, 11/11, 2016

Opener - Finish Properties of Logs **Activity from yesterday** 3.5 Solving Log and Exponential **Equations**

Have a great weekend!

log·a·rithm

early 17th century: from modern Latin logarithmus, from Greek logos 'reckoning, ratio' + arithmos

3.5 Solving Exponential and Logarithmic Equations

Calc OK! Use Logs- Change of Base

(3) 22x 12.

(1)
$$3^{x} = 11$$
 (2) $3^{2x} = 18$
 $109_{3} = 11$ (2) $3^{2x} = 18$
 $109_{3} = 18 = 2x$
 $109_{3} = 109_{3} = 109_{3}$
 $109_{3} = 109_{3} = 109_{3}$
 $109_{3} = 109_{3} = 109_{3}$
 $109_{3} = 109_{3} = 109_{3}$
 $109_{3} = 109_{3} = 109_{3}$
 $109_{3} = 109_{3} = 109_{3}$

Log Equations - No Cale

Log Equations - No Cale

* Change to Exponential Form

* Change to Exponential Form

(1)
$$1096$$
 ($4x+12$) = 2 (2) 1092 ($4x-4$) = 5

exp. form: $6^2 = 4x + 12$
 $36 = 4x + 12$
 $36 = 4x$
 $4 = 4x$
 $6 = x$

(2)
$$\log_2(4x-4) = 5$$

 $\int_0^5 = 4x-4$
 $3a = 4x-4$
 $3b = 4x$
 $9 = x$