Section 3.5 Exercises

For #1-18, take a logarithm of both sides of the equation, when appropriate.

- 1. $36\left(\frac{1}{3}\right)^{3/5} = 4$ $\left(\frac{1}{3}\right)^{1/5} = \frac{1}{9}$
 - $\frac{x}{5} = 2$
- 2. $32\left(\frac{1}{4}\right)^{x/3} = 2$

 - $\left(\frac{1}{4}\right)^{\frac{1}{2}3} = \frac{1}{16}$ $\left(\frac{1}{4}\right)^{\frac{1}{2}3} = \left(\frac{1}{4}\right)^2$
 - $\frac{x}{3} = 2$
 - x = 6
- 3. $2 \cdot 5^{x/4} = 250$
 - $5^{x/4} = 125$ $5^{1/4} = 5^3$

 - $\frac{x}{4} = 3$
 - x = 12
- 4. $3 \cdot 4^{x/2} = 96$
 - $4^{1/2} = 32$ $4^{x/2} = 4^{5/2}$

 - $\frac{x}{2} = \frac{5}{2}$ x = 5
- 5. $10^{-x/3} = 10$, so -x/3 = 1, and therefore x = -3.
- 6. $5^{-x/4} = 5$, so -x/4 = 1, and therefore x = -4.
- 7. $x = 10^4 = 10,000$
- 8. $x = 2^5 = 32$
- 9. $x 5 = 4^{-1}$, so $x = 5 + 4^{-1} = 5.25$.

10.
$$1 - x = 4^1$$
, so $x = -3$.

11.
$$x = \frac{\ln 4.1}{\ln 1.06} = \log_{1.06} 4.1 \approx 24.2151$$

12.
$$x = \frac{\ln 1.6}{\ln 0.98} = \log_{0.98} 1.6 \approx -23.2644$$

13.
$$e^{0.035x} = 4$$
, so $0.035x = \ln 4$, and therefore $x = \frac{1}{0.035} \ln 4 \approx 39.6084$.

14.
$$e^{0.045x} = 3$$
, so $0.045x = \ln 3$, and therefore $x = \frac{1}{0.045} \ln 3 \approx 24.4136$.

15.
$$e^{-x} = \frac{3}{2}$$
, so $-x = \ln \frac{3}{2}$, and therefore $x = -\ln \frac{3}{2} \approx -0.4055$.

16.
$$e^{-x} = \frac{5}{3}$$
, so $-x = \ln \frac{5}{3}$, and therefore $x = -\ln \frac{5}{3} \approx -0.5108$.

17.
$$\ln(x-3) = \frac{1}{3}$$
, so $x-3 = e^{1/3}$, and therefore $x = 3 + e^{1/3} \approx 4.3956$.

18.
$$\log(x + 2) = -2$$
, so $x + 2 = 10^{-2}$, and therefore $x = -2 + 10^{-2} = -1.99$.

21. We must have
$$\frac{x}{x+1} > 0$$
, so $x < -1$ or $x > 0$.
Domain: $(-\infty, -1) \cup (0, \infty)$; graph (d).

23. We must have x > 0. Domain: $(0, \infty)$; graph (a).

For #25-38, algebraic solutions are shown (and are generally the only way to get exact answers). In many cases solving graphically would be faster; graphical support is also useful.

26. Write both sides as powers of
$$e$$
, leaving $e^{\ln x^2} = e^4$, or $x^2 = e^4$. Then $x = e^2 \approx 7.389$ or $x = -e^2 \approx -7.389$.

27. Write both sides as powers of 10, leaving
$$10^{\log x^4} = 10^2$$
, or $x^4 = 100$. Then $x^2 = 10$, and $x = \pm \sqrt{10}$.

28. Write both sides as powers of
$$e$$
, leaving $e^{\ln x^2} = e^{12}$, or $x^6 = e^{12}$. Then $x^2 = e^4$, and $x = \pm e^2$.

29. Multiply both sides by
$$3 \cdot 2^x$$
, leaving $(2^x)^2 - 1 = 12 \cdot 2^x$, or $(2^x)^2 - 12 \cdot 2^x - 1 = 0$. This is quadratic in 2^x ,

leading to
$$2^x = \frac{12 \pm \sqrt{144 + 4}}{2} = 6 \pm \sqrt{37}$$
. Only $6 + \sqrt{37}$ is positive, so the only answer is

6 +
$$\sqrt{37}$$
 is positive, so the only answer is
$$x = \frac{\ln(6 + \sqrt{37})}{\ln 2} = \log_2(6 + \sqrt{37}) \approx 3.5949.$$

30. Multiply both sides by
$$2 \cdot 2^x$$
, leaving $(2^x)^2 + 1 = 6 \cdot 2^x$, or $(2^x)^2 - 6 \cdot 2^x + 1 = 0$. This is quadratic in 2^x , leading to $2^x = \frac{6 \pm \sqrt{36 - 4}}{2} = 3 \pm 2\sqrt{2}$. Then $x = \frac{\ln(3 \pm 2\sqrt{2})}{\ln 2}$ = $\log_2(3 \pm 2\sqrt{2}) \approx \pm 2.5431$.

31. Multiply both sides by
$$2e^x$$
, leaving $(e^x)^2 + 1 = 8e^x$, or $(e^x)^2 - 8e^x + 1 = 0$. This is quadratic in e^x , leading to $e^x = \frac{8 \pm \sqrt{64 - 4}}{2} = 4 \pm \sqrt{15}$. Then $x = \ln(4 \pm \sqrt{15}) \approx \pm 2.0634$.

32. This is quadratic in
$$e^x$$
, leading to
$$e^x = \frac{-5 \pm \sqrt{25 + 24}}{4} = \frac{-5 \pm 7}{4}$$
. Of these two numbers, only $\frac{-5 + 7}{4} = \frac{1}{2}$ is positive, so $x = \ln \frac{1}{2}$ ≈ -0.6931 .

33.
$$\frac{500}{200} = 1 + 25e^{0.3x}$$
, so $e^{0.3x} = \frac{3}{50} = 0.06$, and therefore $x = \frac{1}{0.3} \ln 0.06 \approx -9.3780$.

34.
$$\frac{400}{150} = 1 + 95e^{-0.6x}$$
, so $e^{-0.6x} = \frac{1}{57}$, and therefore $x = \frac{1}{-0.6} \ln \frac{1}{57} \approx 6.7384$.

35. Multiply by 2, then combine the logarithms to obtain
$$\ln \frac{x+3}{x^2} = 0$$
. Then $\frac{x+3}{x^2} = e^0 = 1$, so $x+3 = x^2$. The solutions to this quadratic equation are $x = \frac{1 \pm \sqrt{1+12}}{2} = \frac{1}{2} \pm \frac{1}{2} \sqrt{13} \approx 2.3028$.

36. Multiply by 2, then combine the logarithms to obtain
$$\log \frac{x^2}{x+4} = 2$$
. Then $\frac{x^2}{x+4} = 10^2 = 100$, so $x^2 = 100(x+4)$. The solutions to this quadratic equation are $x = \frac{100 \pm \sqrt{10000 + 1600}}{2} = 50 \pm 10\sqrt{29}$. The original equation requires that $x > 0$, so $50 - 10\sqrt{29}$ is extraneous; the only actual solution is $x = 50 + 10\sqrt{29} \approx 103.8517$.

38.
$$\log[(x-2)(x+5)] = 2 \log 3$$
, so $(x-2)(x+5) = 9$, or $x^2 + 3x - 19 = 0$.
Then $x = \frac{-3 \pm \sqrt{9 + 76}}{2} = -\frac{3}{2} \pm \frac{1}{2}\sqrt{85}$. The actual solution is $x = -\frac{3}{2} + \frac{1}{2}\sqrt{85} \approx 3.1098$; since $x = 2$ must be positive, the other algebraic solution, $x = -\frac{3}{2} - \frac{1}{2}\sqrt{85}$, is extraneous.