Answer the problems below in your notebook:
(1) $x^{5} \cdot x^{3}=x^{8}$
(5) $a^{-3}=\frac{1}{a^{3}}$
(2) $\frac{x^{6}}{x^{2}}=x^{4}$
(6) $4 x^{-2}=\frac{4}{x^{2}}$

Today I found out...
The equal sign, " $=$ ", was invented in 1557 by Welsh mathematician Robert Recorde, who was fed up with the two lines because "no two things can be chose equal*
©TodaylfoundOut.com
(3) $\left(a^{3} b\right)^{2}=a^{6} b^{2}$
(7) $2^{\frac{3 P^{\text {power }},}{\text { root }}}=\sqrt{8}=\sqrt[2]{2^{3}}$
(4) $\left(2 x^{2} y^{5}\right)^{3}=8 x^{6} y^{15}$ * Remember, Logs are Exponents!
3.4 Properties of Logs

$$
y=b^{x} \Longleftrightarrow \log _{b} y=x \leftarrow \text { exponent }
$$

Product Rule

$$
\log _{b}(x \cdot y)=\log _{b} x+\log _{b} y
$$

(1) $\log 9 y$
(2)

$$
=\log 9+\log y
$$

$$
\begin{aligned}
& \log _{2} 4 x \\
& =\log _{2} 4+\log _{2} x \\
& =2+\log _{2} x
\end{aligned}
$$

(3) Write as a single $\log ^{\prime}$:

$$
\begin{gathered}
\log _{3} 2+\log _{3} 5 \\
=\log _{3} 10
\end{gathered}
$$

Quotient Rule

$$
\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y
$$

(1)

$$
\begin{gathered}
\log 700-\log 7 \\
=\log 100 \\
=2
\end{gathered}
$$

(2) $\log \frac{x}{2}$

$$
=\log x-\log 2
$$

Power Rule

$$
\log _{b} x^{m}=m \log _{b} x
$$

(1) $\log ^{3}=3 \log 5 \quad$ (also $\log 125$)
(2) $\ln x^{2}=2 \ln x$
(3) $\log \sqrt[3]{z}=\frac{1}{3} \log z$
(4)

$$
\begin{aligned}
\log 2 x^{5} & =\log 2+\log x^{5} \\
& =\log 2+5 \log x
\end{aligned}
$$

Change of Base helps to $\mathrm{log} / \mathrm{ln}$ in

$$
\log _{b} x=\frac{\log x}{\log b} \quad \log _{b} x=\frac{\ln x}{\ln b}
$$

(1)

$$
\begin{aligned}
\log _{2} 5 & =\frac{\log 5}{\log 2} \approx 2.322 \\
& =\frac{\ln 5}{\ln 2} \approx 2.322
\end{aligned}
$$

