Section 3.3 Exercises

1. $\log_4 4 = 1$ because $4^1 = 4$

2. $\log_6 1 = 0$ because $6^0 = 1$

3. $\log_2 32 = 5$ because $2^5 = 32$

4. $\log_3 81 = 4$ because $3^4 = 81$

5. $\log_5 \sqrt[3]{25} = \frac{2}{3}$ because $5^{2/3} = \sqrt[3]{25}$

6. $\log_6 \frac{1}{\sqrt[5]{36}} = -\frac{2}{5}$ because $6^{-2/5} = \frac{1}{6^{2/5}} = \frac{1}{\sqrt[5]{36}}$

142 Chapter 3 Exponential, Logistic, and Logarithmic Functions

7. $\log 10^3 = 3$

8.
$$\log 10,000 = \log 10^4 = 4$$

9. $\log 100,000 = \log 10^5 = 5$

10. $\log 10^{-4} = -4$

11.
$$\log \sqrt[3]{10} = \log 10^{1/3} = \frac{1}{2}$$

12. $\log \frac{1}{\sqrt{1000}} = \log 10^{-3/2} = -\frac{3}{2}$

13. $\ln e^3 = 3$

14.
$$\ln e^{-4} = -4$$

15.
$$\ln \frac{1}{e} = \ln e^{-1} = -1$$

16. $\ln 1 = \ln e^0 = 0$

17.
$$\ln \sqrt[4]{e} = \ln e^{1/4} = \frac{1}{4}$$

18.
$$\ln \frac{1}{\sqrt{e^7}} = \ln e^{-7/2} = -\frac{7}{2}$$

19. 3, because $b^{\log_b 3} = 3$ for any b > 0

20. 8, because $b^{\log_4 8} = 8$ for any b > 0

21. $10^{\log (0.5)} = 10^{\log_{10}(0.5)} = 0.5$

22.
$$10^{\log 14} = 10^{\log_{10} 14} = 14$$

23. $e^{\ln 6} = e^{\log_2 6} = 6$

24.
$$e^{\ln{(1/5)}} = e^{\log_2(1/5)} = 1/5$$

25. $\log 9.43 \approx 0.9745 \approx 0.975$ and $10^{0.9745} \approx 9.43$

26. $\log 0.908 \approx -0.042$ and $10^{-0.042} \approx 0.908$

27. $\log (-14)$ is undefined because -14 < 0.

28. $\log (-5.14)$ is undefined because -5.14 < 0.

29. $\ln 4.05 \approx 1.399$ and $e^{1.399} \approx 4.05$

30. $\ln 0.733 \approx -0.311$ and $e^{-0.311} \approx 0.733$

31. ln (-0.49) is undefined because -0.49 < 0.

32. $\ln (-3.3)$ is undefined because -3.3 < 0.

33. $x = 10^2 = 100$

34.
$$x = 10^4 = 10,000$$

35.
$$x = 10^{-1} = \frac{1}{10} = 0.1$$

36.
$$x = 10^{-3} = \frac{1}{1000} = 0.001$$

37. f(x) is undefined for x > 1. The answer is (d).

38. f(x) is undefined for x < -1. The answer is (b).

39. f(x) is undefined for x < 3. The answer is (a).

40. f(x) is undefined for x > 4. The answer is (c).

41. Starting from y = ln x: translate left 3 units.

42. Starting from $y = \ln x$: translate up 2 units.

 Starting from y = ln x: reflect across the y-axis and translate up 3 units.

44. Starting from y = ln x: reflect across the y-axis and translate down 2 units.

45. Starting from y = ln x: reflect across the y-axis and translate right 2 units.

46. Starting from y = ln x: reflect across the y-axis and translate right 5 units.

47. Starting from y = log x: translate down 1 unit.

48. Starting from y = log x: translate right 3 units.

49. Starting from y = log x: reflect across both axes and vertically stretch by 2.

50. Starting from y = log x: reflect across both axes and vertically stretch by 3.

51. Starting from $y = \log x$: reflect across the y-axis, translate right 3 units, vertically stretch by 2, translate down 1 unit.

52. Starting from $y = \log x$: reflect across both axes, translate right 1 unit, vertically stretch by 3, translate up 1 unit.

[-1, 9] by [-3, 3]

Domain: $(2, \infty)$

Range: $(-\infty, \infty)$

Continuous

Always increasing

Not symmetric

Not bounded

No local extrema

Asymptote at x = 2

 $\lim_{x \to \infty} f(x) = \infty$

[-2, 8] by [-3, 3]

Domain: $(-1, \infty)$

Range: $(-\infty, \infty)$

Continuous

Always increasing

Not symmetric

Not bounded

No local extrema

Asymptote: x = -1

 $\lim f(x) = \infty$

55.

Domain: $(1, \infty)$ Range: $(-\infty, \infty)$

Continuous

Always decreasing

Not symmetric

Not bounded

No local extrema

Asymptote: x = 1

 $\lim f(x) = -\infty$

Domain: $(-2, \infty)$

Range: $(-\infty, \infty)$

Continuous

Always decreasing

Not symmetric

Not bounded

No local extrema

Asymptote: x = -2

time deal -

57.

Domain: $(0, \infty)$

Range: $(-\infty, \infty)$

Continuous

Increasing on its domain

No symmetry

Not bounded

No local extrema

Asymptote at x = 0

 $\lim f(x) = \infty$

58.

[-7, 3, 1] by [-10, 10, 2]

Domain: (-∞, 2)

Range: $(-\infty, \infty)$

Continuous

Decreasing on its domain

No symmetry

Not bounded

No local extrema

Asymptote at x = 2

 $\lim_{x \to -\infty} f(x) = \infty$

59. (a)
$$\beta = 10 \log \left(\frac{10^{-11}}{10^{-12}} \right) = 10 \log 10 = 10(1) = 10 \text{ dB}$$

(b)
$$\beta = 10 \log \left(\frac{10^{-5}}{10^{-12}} \right) = 10 \log 10^7 = 10(7) = 70 \text{ dB}$$

(c)
$$\beta = 10 \log \left(\frac{10^3}{10^{-12}} \right) = 10 \log 10^{15} = 10(15) = 150 \text{ dB}$$

- **60.** $I = 12 \cdot 10^{-0.0708} \approx 10.2019$ lumens.
- 61. (a) A magnitude 3 earthquake is $\frac{1000}{100}$ = 10 times more powerful than a magnitude 2 earthquake. A magnitude 5 earthquake is 100,000 = 100 times more powerful than a magnitude 2 earthquake.

[0, 6] by [0, 110000]

- (c) Ground motion = 10^x where x is the magnitude of the earthquake, so $y = 10^x$.
- (d) $y = 10^x$, so $x = \log y$.
- (e) Extremely large values can be represented by much smaller values.
- (f) Yes

62. (a) The exponential regression model is 2552165025 • 0.995838^x , where x is the year and y is the population.

[1900, 2100] by [100000, 1000000]

- (c) Solving graphically, we find that the curve $y = 2552165025 \cdot 0.995838^{x}$ intersects the line y = 500,000 at t = 2047.
- (d) Not in most cases as populations will not continue to grow without bound.
- 63. True, by the definition of a logarithmic function.
- 64. True, by the definition of common logarithm.
- 65. log 2 ≈ 0.30103. The answer is C.
- 66. log 5 ≈ 0.699 but 2.5 log 2 ≈ 0.753. The answer is A.
- 67. The graph of $f(x) = \ln x$ lies entirely to the right of the origin. The answer is B.

68. For
$$f(x) = 2 \cdot 3^x$$
, $f^{-1}(x) = \log_3(x/2)$
because $f^{-1}(f(x)) = \log_3(2 \cdot 3^x/2)$
= $\log_3 3^x$
= x .

The answer is A.

69.

f(x)	3*	$\log_3 x$
Domain	(-∞, ∞)	(0,∞)
Range	(0,∞)	(−∞,∞)
Intercepts	(0, 1)	(1,0)
Asymptotes	y = 0	x = 0

70.

f(x)	5*	log ₅ x
Domain	(−∞, ∞)	(0,∞)
Range	(0,∞)	(−∞,∞)
Intercepts	(0, 1)	(1,0)
Asymptotes	y = 0	x = 0

