Exploration 2

$$f(x) = 2^x$$
$$g(x) = e^{0.4x}$$

 $f(x) = 2^x$

$$f(x) = 2^x$$
$$g(x) = e^{0.5x}$$

$$f(x) = 2^x$$
$$g(x) = e^{0.6x}$$

$$f(x) = 2^{x}$$
$$g(x) = e^{0.7x}$$

$$f(x) = 2^x$$
$$g(x) = e^{0.8x}$$

k = 0.7 most closely matches the graph of f(x).

3. $k \approx 0.693$

Quick Review 3.1

1.
$$\sqrt[3]{-216} = -6 \text{ since } (-6)^3 = -216$$

2.
$$\sqrt[3]{\frac{125}{8}} = \frac{5}{2}$$
 since $5^3 = 125$ and $2^3 = 8$

3.
$$27^{2/3} = (3^3)^{2/3} = 3^2 = 9$$

4.
$$4^{5/2} = (2^2)^{5/2} = 2^5 = 32$$

5.
$$\frac{1}{2^{12}}$$

- 1. Not an exponential function because the base is variable and the exponent is constant. It is a monomial function.
- 2. Exponential function, with an initial value of 1 and base of 3.
- 3. Exponential function, with an initial value of 1 and base
- 4. Not an exponential function because the exponent is constant. It is a constant function.
- 5. Not an exponential function because the base is variable.
- 6. Not an exponential function because the base is variable. It is a power function.

7.
$$f(0) = 3 \cdot 5^0 = 3 \cdot 1 = 3$$

8.
$$f(-2) = 6 \cdot 3^{-2} = \frac{6}{9} = \frac{2}{3}$$

9.
$$f\left(\frac{1}{3}\right) = -2 \cdot 3^{1/3} = -2\sqrt[3]{3}$$

10.
$$f(-\frac{3}{2}) = 8 \cdot 4^{-3/2} = \frac{8}{(2^2)^{3/2}} = \frac{8}{2^3} = \frac{8}{8} = 1$$

11.
$$f(x) = \frac{3}{2} \cdot \left(\frac{1}{2}\right)^x$$

12.
$$g(x) = 12 \cdot \left(\frac{1}{3}\right)^x$$

13.
$$f(x) = 3 \cdot (\sqrt{2})^x = 3 \cdot 2^{x/2}$$

14.
$$g(x) = 2 \cdot \left(\frac{1}{e}\right)^x = 2e^{-x}$$

15. Translate $f(x) = 2^x$ by 3 units to the right. Alternatively, $g(x) = 2^{x-3} = 2^{-3} \cdot 2^x = \frac{1}{8} \cdot 2^x = \frac{1}{8} \cdot f(x)$, so it can be

obtained from f(x) using a vertical shrink by a factor of $\frac{1}{6}$

16. Translate $f(x) = 3^x$ by 4 units to the left. Alternatively, $g(x) = 3^{x+4} = 3^4 \cdot 3^x = 81 \cdot 3^x = 81 \cdot f(x)$, so it can be obtained by vertically stretching f(x) by a factor of 81.

Copyright © 2015 Pearson Education, Inc.

17. Reflect $f(x) = 4^x$ over the y-axis.

18. Reflect $f(x) = 2^x$ over the y-axis and then shift by 5 units to the right.

19. Vertically stretch $f(x) = 0.5^x$ by a factor of 3 and then shift 4 units up.

20. Vertically stretch $f(x) = 0.6^x$ by a factor of 2 and then horizontally shrink by a factor of 3.

21. Reflect $f(x) = e^x$ across the y-axis and horizontally shrink by a factor of 2.

22. Reflect $f(x) = e^x$ across the x-axis and y-axis. Then, horizontally shrink by a factor of 3.

23. Reflect $f(x) = e^x$ across the y-axis, horizontally shrink by a factor of 3, translate 1 unit to the right, and vertically stretch by a factor of 2.

24. Horizontally shrink $f(x) = e^x$ by a factor of 2, vertically stretch by a factor of 3, and shift down 1 unit.

- Graph (a) is the only graph shaped and positioned like the graph of y = b^x, b > 1.
- 26. Graph (d) is the reflection of y = 2x across the y-axis.
- 27. Graph (c) is the reflection of y = 2x across the x-axis.
- 28. Graph (e) is the reflection of $y = 0.5^x$ across the x-axis.
- 29. Graph (b) is the graph of $y = 3^{-x}$ translated down 2 units.
- 30. Graph (f) is the graph of y = 1.5x translated down 2 units.
- 31. Exponential decay; $\lim_{x \to \infty} f(x) = 0$; $\lim_{x \to \infty} f(x) = \infty$
- 32. Exponential decay; $\lim f(x) = 0$; $\lim f(x) = \infty$
- 33. Exponential decay: $\lim f(x) = 0$; $\lim f(x) = \infty$
- 34. Exponential growth: $\lim_{x \to \infty} f(x) = \infty$; $\lim_{x \to \infty} f(x) = 0$
- 35. x < 0

36. x > 0

[-0.25, 0.25] by [0.5, 1.5]

37. x < 0

38. x > 0

[-0.25, 0.25] by [0.75, 1.25]

39.
$$y_1 = y_3$$
, since $3^{2x+4} = 3^{2(x+2)} = (3^2)^{x+2} = 9^{x+2}$.

40.
$$y_2 = y_3$$
, since $2 \cdot 2^{3x-2} = 2^1 \cdot 2^{3x-2} = 2^{1+3x-2} = 2^{3x-1}$.

41. y-intercept: (0, 4). Horizontal asymptotes: y = 0, y = 12.

42. y-intercept: (0, 3). Horizontal asymptotes: y = 0, y = 18.

43. y-intercept: (0, 4). Horizontal asymptotes: y = 0, y = 16.

44. y-intercept: (0, 3). Horizontal asymptotes: y = 0, y = 9.

Domain: $(-\infty, \infty)$

Range: (0, ∞)

Continuous

Always increasing

Not symmetric

Bounded below by y = 0, which is also the only asymptote

No local extrema

 $\lim_{x \to \infty} f(x) = \infty, \lim_{x \to \infty} f(x) = 0$

Domain: $(-\infty, \infty)$

Range: (0, ∞)

Continuous

Always decreasing

Not symmetric

Bounded below by y = 0, which is the only asymptote

No local extrema

$$\lim_{x \to \infty} f(x) = 0, \lim_{x \to \infty} f(x) = \infty$$

47.

Domain: $(-\infty, \infty)$ Range: $(0, \infty)$

Continuous

Always increasing

Not symmetric

Bounded below by y = 0, which is the only asymptote

No local extrema

$$\lim_{x \to \infty} f(x) = \infty, \lim_{x \to \infty} f(x) = 0$$