rule
 ountientrule

product Derivatives worksheet (3.1-3.3 concepts)

1) Let $h(x)=f(x) \cdot g(x)$ and $j(x)=\frac{f(x)}{g(x)}$. Fill in the missing entries in the table below using the information about f and g given and the definitions of h and j.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$	$h^{\prime}(x)$	$j^{\prime}(x)$
-2	1	-1	-3	4	-2	$\frac{-1}{9}$
-1	0	-2	1	1	-2	-2
0	-1	2	-2	1	-5	$-\frac{3}{4}$

2) Suppose that $f(1)=2$ and f^{\prime} is the function shown below. Let $m(x)=x^{3} \cdot f(x)$

a) Is $f(x)$ increasing or decreasing at $x=-3$? slope is negatrie, so $f(x)$ is decreasing
b) Find the equation of the tangent line to $f(x)$ at $x=1$. at $x=1$, slope $=m=4$ $f(1)=2$ (overs)

$$
y-2=4(x-1)
$$

prodectrule Evaluate $m^{\prime}(1)$
$m^{\prime}(1)=1(4)+2(3)$
$=10$

$$
\begin{array}{ll}
u(1)=(1)^{3}=1 & u(1)=3(1)^{2} \\
v=f(1)=2 & =3 \\
v^{\prime}=f^{\prime}(1)=4 &
\end{array}
$$

d) Show that m is increasing at 2
x^{3} is always increasing, and $f^{\prime}(2)=1$, so also increasing.
e) Estimate $f^{\prime \prime}(1)$
cibout - 2

Given $f(x)$, sketch $\frac{d f}{d x}$

5) Given f^{\prime}, sketch a possible graph for f

