8.
$$\frac{x(3x-4) + (x+1)(x-1)}{(x-1)(3x-4)} = \frac{3x^2 - 4x + x^2 - 1}{(x-1)(3x-4)}$$
$$= \frac{4x^2 - 4x - 1}{(x-1)(3x-4)} = \frac{4x^2 - 4x - 1}{3x^2 - 7x + 4}$$

9. (a)
$$\frac{\pm 1, \pm 3}{\pm 1, \pm 2}$$
 or $\pm 1, \pm \frac{1}{2}, \pm 3, \pm \frac{3}{2}$

(b) A graph suggests that -1 and $\frac{3}{2}$ are good candidates for zeros.

$$2x^3 + x^2 - 4x - 3 = (x+1)\left(x - \frac{3}{2}\right)(2x+2)$$

= $(x+1)(2x-3)(x+1)$

10. (a)
$$\frac{\pm 1, \pm 2, \pm 4, \pm 8}{\pm 1, \pm 3}$$

or $\pm 1, \pm \frac{1}{3}, \pm 2, \pm \frac{2}{3}, \pm 4, \pm \frac{4}{3}, \pm 8, \pm \frac{8}{3}$

(b) A graph suggests that -2 and 1 are good candidates for zeros.

Section 2.8 Exercises

- **1.** (a) f(x) = 0 when x = -2, -1, 5
 - **(b)** f(x) > 0 when -2 < x < -1 or x > 5
 - (c) f(x) < 0 when x < -2 or -1 < x < 5 $\begin{array}{c|ccccc} & & & & & & & & & \\ \hline & (-)(-)(-), & & & & & & \\ \hline & Negative & Positive & Negative & Positive & x \\ \hline & -2 & & -1 & & 5 \\ \hline \end{array}$

2. (a)
$$f(x) = 0$$
 when $x = 7, -\frac{1}{3}, -4$

(b)
$$f(x) > 0$$
 when $-4 < x < -\frac{1}{3}$ or $x > 7$

(c)
$$f(x) < 0$$
 when $x < -4$ or $-\frac{1}{3} < x < 7$

$$\frac{(-)(-)(-)}{\text{Negative}} + \frac{(-)(-)(+)}{\text{Positive}} + \frac{(-)(+)(+)}{\text{Negative}} + \frac{(+)(+)(+)}{\text{Positive}} \xrightarrow{x} -\frac{1}{3}$$

- 3. (a) f(x) = 0 when x = -7, -4, 6
 - **(b)** f(x) > 0 when x < -7 or -4 < x < 6 or x > 6
 - (c) f(x) < 0 when -7 < x < -4 $\begin{array}{c|c} (-)(-)(-)^2 & (+)(-)(-)^2 & (+)(+)(-)^2 & (+)(+)(+)^2 \\ \hline \text{Positive} & \text{Negative} & \text{Positive} & \text{Positive} \\ \end{array}$

4. (a)
$$f(x) = 0$$
 when $x = -\frac{3}{5}$, 1

(b)
$$f(x) > 0$$
 when $x < -\frac{3}{5}$ or $x > 1$

(c)
$$f(x) < 0$$
 when $-\frac{3}{5} < x < 1$

$$\frac{\text{(-)(+)(-)}}{\text{Positive}} + \frac{\text{(+)(+)(-)}}{\text{Negative}} + \frac{\text{(+)(+)(+)}}{\text{Positive}} \times \frac{x}{x}$$

- 5. (a) f(x) = 0 when x = 8, -1
 - **(b)** f(x) > 0 when -1 < x < 8 or x > 8
 - (c) f(x) < 0 when x < -1

$$\frac{(+)(-)^2(-)^3}{\text{Negative}} + \frac{(+)(-)^2(+)^3}{\text{Positive}} + \frac{(+)(+)^2(+)^3}{\text{Positive}}$$

- **6.** (a) f(x) = 0 when x = -2, 9
 - **(b)** f(x) > 0 when -2 < x < 9 or x > 9
 - (c) f(x) < 0 when x < -2

$$\frac{(-)^{3}(+)(-)^{4}}{\text{Negative}} + \frac{(+)^{3}(+)(-)^{4}}{\text{Positive}} + \frac{(+)^{3}(+)(+)^{4}}{\text{Positive}} \times \frac{(-)^{3}(+)(-)^{4}}{\sqrt{2}}$$

7. $(x + 1)(x - 3)^2 = 0$ when x = -1, 3

$$\begin{array}{c|cccc} & (-)(-)^2 & (+)(-)^2 & (+)(+)^2 \\ \hline \text{Negative} & \text{Positive} & \text{Positive} & x \\ \hline & -1 & 3 & \end{array}$$

By the sign chart, the solution of $(x + 1)(x - 3)^2 > 0$ is $(-1,3) \cup (3,\infty)$.

8.
$$(2x + 1)(x - 2)(3x - 4) = 0$$
 when $x = -\frac{1}{2}, 2, \frac{4}{3}$

By the sign chart, the solution of

$$(2x+1)(x-2)(3x-4) \le 0$$
 is $\left(-\infty, -\frac{1}{2}\right] \cup \left[\frac{4}{3}, 2\right]$.

9. $(x + 1)(x^2 - 3x + 2) = (x + 1)(x - 1)(x - 2) = 0$ when x = -1, 1, 2

$$\frac{(-)(-)(-)}{\text{Negative}} + \frac{(+)(-)(-)}{\text{Positive}} + \frac{(+)(+)(-)}{\text{Negative}} + \frac{(+)(+)(+)}{\text{Positive}} \times \frac{x}{x}$$

By the sign chart, the solution of

$$(x+1)(x-1)(x-2) < 0$$
 is $(-\infty, -1) \cup (1, 2)$.

10.
$$(2x-7)(x^2-4x+4) = (2x-7)(x-2)^2 = 0$$
 when $x = \frac{7}{2}, 2$

$$\frac{\text{(-)(-)}^2 + \text{(-)(+)}^2 + \text{(+)(+)}^2}{\text{Negative} + \text{Negative} + \text{Positive}} \xrightarrow{x}$$

By the sign chart, the solution of $(2x - 7)(x - 2)^2 > 0$ is $\left(\frac{7}{2}, \infty\right)$.

11. By the Rational Zeros Theorem, the possible rational zeros are ± 1 , $\pm \frac{1}{2}$, ± 2 , ± 3 , $\pm \frac{3}{2}$, ± 6 . A graph

suggests that -2, $\frac{1}{2}$, and 3 are good candidates to be zeros. -2 | 2 -3 -11 6 -4 14 -6

 $2x^3 - 3x^2 - 11x + 6 = (x + 2)(x - 3)(2x - 1) = 0$ when $x = -2, 3, \frac{1}{2}$

Negative Positive Negative Positive
$$\frac{1}{2}$$
 $\frac{1}{2}$

By the sign chart, the solution of

$$(x+2)(x-3)(2x-1) \ge 0$$
 is $\left[-2,\frac{1}{2}\right] \cup [3,\infty)$.

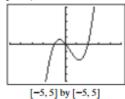
12. By the Rational Zeros Theorem, the possible rational zeros are ±1, ±2, ±3, ±6. A graph suggests that -1, 2, and 3 are good candidates to be zeros.

 $x^3 - 4x^2 + x + 6 = (x + 1)(x - 2)(x - 3) = 0$ when x = -1, 2, 3.

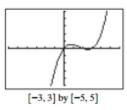
By the sign chart, the solution of

$$(x+1)(x-2)(x-3) \le 0$$
 is $(-\infty, -1] \cup [2, 3]$.

13. The zeros of f(x) = x³ - x² - 2x appear to be -1, 0, and 2. Substituting these values into f confirms this. The graph shows that the solution of x³ - x² - 2x ≥ 0 is [-1, 0] U [2, ∞).



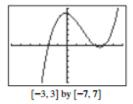
14. The zeros of $f(x) = 2x^3 - 5x^2 + 3x$ appear to be 0, 1, and $\frac{3}{2}$. Substituting these values into f confirms this. The graph shows that the solution of $2x^3 - 5x^2 + 3x < 0$ is $(-\infty, 0) \cup \left(1, \frac{3}{2}\right)$.



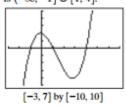
15. The zeros of $f(x) = 2x^3 - 5x^2 - x + 6$ appear to be -1, $\frac{3}{2}$, and 2. Substituting these values into f confirms this.

The graph shows that the solution of

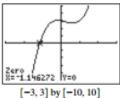
$$2x^3 - 5x^2 - x + 6 > 0$$
 is $\left(-1, \frac{3}{2}\right) \cup (2, \infty)$.



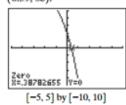
16. The zeros of f(x) = x³ - 4x² - x + 4 appear to be -1, 1, and 4. Substituting these values into f confirms this. The graph shows that the solution of x³ - 4x² - x + 4 ≤ 0 is (-∞, -1] ∪ [1, 4].



17. The only zero of $f(x) = 3x^3 - 2x^2 - x + 6$ is found graphically to be $x \approx -1.15$. The graph shows that the solution of $3x^3 - 2x^2 - x + 6 \ge 0$ is approximately $[-1.15, \infty)$.

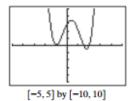


18. The only zero of $f(x) = -x^3 - 3x^2 - 9x + 4$ is found graphically to be $x \approx 0.39$. The graph shows that the solution of $-x^3 - 3x^2 - 9x + 4 < 0$ is approximately $(0.39, \infty)$.



19. The zeros of $f(x) = 2x^4 - 3x^3 - 6x^2 + 5x + 6$ appear to be $-1, \frac{3}{2}$, and 2. Substituting these into f confirms this.

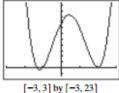
The graph shows that the solution of $2x^4 - 3x^3 - 6x^2 + 5x + 6 < 0$ is $\left(\frac{3}{2}, 2\right)$.



20. The zeros of $f(x) = 3x^4 - 5x^3 - 12x^2 + 12x + 16$ appear to be $-\frac{4}{3}$, -1, and 2. Substituting these into f

confirms this. The graph shows that the solution of $3x^4 - 5x^3 - 12x^2 + 12x + 16 \ge 0$ is

$$\left(-\infty, -\frac{4}{3}\right] \cup [-1, \infty).$$



21.
$$f(x) = (x^2 + 4)(2x^2 + 3)$$

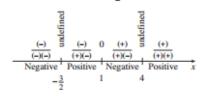
- (a) The solution is $(-\infty, \infty)$, because both factors of f(x)are always positive.
- (b) The solution is $(-\infty, \infty)$, for the same reason as in (a).
- (c) There are no solutions, because both factors of f(x)are always positive.
- (d) There are no solutions, for the same reason as in part (c).
- 22. $f(x) = (x^2 + 1)(-2 3x^2)$
 - (a) There are no solutions, because x² + 1 is always positive and $-2 - 3x^2$ is always negative.
 - (b) There are no solutions, for the same reason as in part
 - (c) $(-\infty, \infty)$, because $x^2 + 1$ is always positive and -2 $3x^2$ is always negative.
 - (d) (-∞, ∞), for the same reason as in part (c).
- 23. $f(x) = (2x^2 2x + 5)(3x 4)^2$ The first factor is always positive because the leading term has a positive coefficient and the discriminant $(-2)^2 - 4(2)(5) = -36$ is negative. The only zero is x = 4/3, with multiplicity two, since that is the solution for 3x - 4 = 0.
 - (a) True for all $x \neq \frac{4}{3}$
 - (b) (-∞, ∞)
 - (c) There are no solutions.

(d)
$$x = \frac{4}{3}$$

24. $f(x) = (x^2 + 4)(3 - 2x)^2$

The first factor is always positive. The only zero is x = 3/2, with multiplicity two, since that is the solution for 3 - 2x = 0.

- (a) True for all $x \neq \frac{3}{2}$
- (b) (-∞, ∞)
- (c) There are no solutions.
- (d) $x = \frac{3}{2}$
- **25.** (a) f(x) = 0 when x = 1
 - **(b)** f(x) is undefined when $x = -\frac{3}{2}$, 4
 - (c) f(x) > 0 when $-\frac{3}{2} < x < 1$ or x > 4
 - (d) f(x) < 0 when $x < -\frac{3}{2}$ or 1 < x < 4



- **26.** (a) f(x) = 0 when $x = \frac{7}{2}, -1$
 - **(b)** f(x) is undefined when x = -5
 - (c) f(x) > 0 when -5 < x < -1 or $x > \frac{7}{2}$
 - (d) f(x) < 0 when x < -5 or $-1 < x < \frac{7}{2}$

- 27. (a) f(x) = 0 when x = 0, -3
 - **(b)** f(x) is undefined when x < -3
 - (c) f(x) > 0 when x > 0
 - (d) f(x) < 0 when -3 < x < 0

$$\begin{array}{c|cccc}
0 & 0 \\
 & (-)(+) & (+)(+) \\
\hline
Undefined & Negative & Positive & x \\
-3 & 0 & & & \\
\end{array}$$

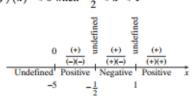
- **28.** (a) f(x) = 0 when $x = 0, -\frac{9}{3}$
 - (b) None. f(x) is never undefined.
 - (c) f(x) > 0 when $x \neq -\frac{9}{2}$, 0

120 Chapter 2 Polynomial, Power, and Rational Functions

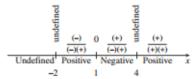
(d) None. f(x) is never negative.

$$\begin{array}{c|cccc} & (-)^2 \mid -| & 0 & (-)^2 \mid +| & 0 & (+)^2 \mid +| \\ \hline \text{Positive} & \text{Positive} & \text{Positive} & x \\ & & -\frac{9}{2} & 0 & & & \end{array}$$

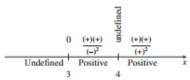
- **29.** (a) f(x) = 0 when x = -5
 - **(b)** f(x) is undefined when $x = -\frac{1}{2}, x = 1, x < -5$
 - (c) f(x) > 0 when $-5 < x < -\frac{1}{2}$ or x > 1
 - (d) f(x) < 0 when $-\frac{1}{2} < x < 1$



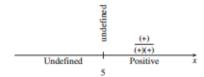
- **30.** (a) f(x) = 0 when x = 1
 - (b) f(x) is undefined when $x = 4, x \le -2$
 - (c) f(x) > 0 when -2 < x < 1 or x > 4
 - (d) f(x) < 0 when 1 < x < 4



- **31.** (a) f(x) = 0 when x = 3
 - **(b)** f(x) is undefined when x = 4, x < 3
 - (c) f(x) > 0 when 3 < x < 4 or x > 4
 - (d) None. f(x) is never negative.



- **32.** (a) None. f(x) is never 0.
 - **(b)** f(x) is undefined when $x \le 5$
 - (c) f(x) > 0 when $5 < x < \infty$
 - (d) None. f(x) is never negative.



33.
$$f(x) = \frac{x-1}{x^2-4} = \frac{x-1}{(x+2)(x-2)}$$
 has points of potential sign change at $x = -2, 1, 2$.

Negative Positive Negative Positive
$$x$$

By the sign chart, the solution of $\frac{x-1}{x^2-4} < 0$ is $(-\infty, -2) \cup (1, 2)$.

34.
$$f(x) = \frac{x+2}{x^2-9} = \frac{x+2}{(x+3)(x-3)}$$
 has points of potential sign change at $x = -3, -2, 3$.

Negative Positive Negative Positive
$$x + 2$$

By the sign chart, the solution of $\frac{x+2}{x^2-9} < 0$ is $(-\infty, -3) \cup (-2, 3)$.

35.
$$f(x) = \frac{x^2 - 1}{x^2 + 1} = \frac{(x + 1)(x - 1)}{(x^2 + 1)}$$
 has points of potential sign change at $x = -1, 1$.

potential sign change at x = -1, 1.

$$\begin{array}{c|ccccc} & (-)(-) & 0 & (+)(-) & 0 & (+)(+) \\ \hline & (+) & (+) & (+) & (+) \\ \hline & Positive & Negative & Positive & x \\ \hline & -1 & & & \end{array}$$

By the sign chart, the solution of $\frac{x^2 - 1}{x^2 + 1} \le 0$ is [-1, 1].

36.
$$f(x) = \frac{x^2 - 4}{x^2 + 4} = \frac{(x + 2)(x - 2)}{x^2 + 4}$$
 has points of

$$\begin{array}{c|ccccc} & (-)(-) & 0 & (+)(-) & 0 & (+)(+) \\ \hline (+) & & (+) & & (+) \\ \hline Positive & Negative & Positive & x \\ \hline & & & 2 & & 2 \\ \hline \end{array}$$

By the sign chart, the solution of $\frac{x^2 - 4}{x^2 + 4} > 0$ is

$$(-\infty, -2) \cup (2, \infty)$$
.
37. $f(x) = \frac{x^2 + x - 12}{x^2 - 4x + 4} = \frac{(x + 4)(x - 3)}{(x - 2)^2}$ has points of potential sign change at $x = -4, 2, 3$.

By the sign chart, the solution of $\frac{x^2 + x - 12}{x^2 - 4x + 4} > 0$ is $(-\infty, -4) \cup (3, \infty)$.

By the sign chart, the solution of $\frac{x^2 + 3x - 10}{x^2 - 6x + 9} < 0$ is (-5, 2).

39. $f(x) = \frac{x^3 - x}{x^2 + 1} = \frac{x(x+1)(x-1)}{x^2 + 1}$ has points of potential sign change at x = -1, 0, 1.

By the sign chart, the solution of $\frac{x^3 - x}{x^2 + 1} \ge 0$ is $[-1, 0] \cup [1, \infty)$.

 $[-1, 0] \cup [1, \infty)$. **40.** $f(x) = \frac{x^3 - 4x}{x^2 + 2} = \frac{x(x+2)(x-2)}{x^2 + 2}$ has points of potential sign change at x = -2, 0, 2.

By the sign chart, the solution of $\frac{x^3 - 4x}{x^2 + 2} \le 0$ is $(-\infty, -2] \cup [0, 2]$.

41. f(x) = x|x - 2| has points of potential sign change at x = 0, 2.

By the sign chart, the solution of x|x-2| > 0 is $(0,2) \cup (2,\infty)$.

42. $f(x) = \frac{x-3}{|x+2|}$ has points of potential sign change at x = -2, 3.

By the sign chart, the solution of $\frac{x-3}{|x+2|} < 0$ is $(-\infty, -2) \cup (-2, 3)$.

43. $f(x) = (2x - 1)\sqrt{x + 4}$ has a point of potential sign change at $x = \frac{1}{2}$. Note that the domain of f is $[-4, \infty)$.

Undefined Negative Positive
$$x$$

$$\begin{array}{c|cccc}
0 & 0 & & & \\
\hline
-4 & & & & \\
\hline
1 & & & & \\
\end{array}$$

By the sign chart, the solution of $(2x - 1)\sqrt{x + 4} < 0$ is $\left(-4, \frac{1}{2}\right)$.

44. $f(x) = (3x - 4)\sqrt{2x + 1}$ has a point of potential sign change at $x = \frac{4}{3}$. Note that the domain of f is $\left[-\frac{1}{2}, \infty\right)$.

Undefined Negative Positive
$$x$$

$$-\frac{1}{2}$$

$$\frac{0}{(-)(+)}$$
Positive x

By the sign chart, the solution of $(3x - 4)\sqrt{2x + 1} \ge 0$ is $\left[\frac{4}{3}, \infty\right)$.

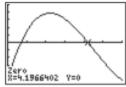
45. $f(x) = \frac{x^3(x-2)}{(x+3)^2}$ has points of potential sign change at x = -3, 0, 2.

By the sign chart, the solution of $\frac{x^3(x-2)}{(x+3)^2} < 0$ is (0,2).

46. $f(x) = \frac{(x-5)^4}{x(x+3)} \ge 0$ has points of potential sign change at x = -3, 0, 5.

By the sign chart, the solution of $\frac{(x-5)^4}{x(x+3)} \ge 0$ is $(-\infty, -3) \cup (0, \infty)$.

59. The lengths of the sides of the box are x, 12 - 2x, and 15 - 2x, so the volume is x(12 - 2x)(15 - 2x). To solve $x(12 - 2x)(15 - 2x) \le 100$, graph f(x) = x(12 - 2x)(15 - 2x) - 100 and find the zeros: $x \approx 0.69$ and $x \approx 4.20$.



[0, 6] by [-100, 100]

From the graph, the solution of $f(x) \le 0$ is approximately $[0, 0.69] \cup [4.20, 6]$. The squares should be such that either 0 in. $\le x \le 0.69$ in. or 4.20 in. $\le x \le 6$ in.