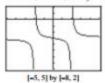
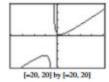
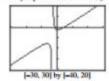
28. Intercepts: (0, -3), (-1.84, 0), and (2.17, 0). Asymptotes: x = -2, x = 2, and y = -3.



29. Intercept: $(0, \frac{3}{2})$. Asymptotes: x = -2, y = x - 4.



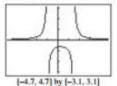
30. Intercepts: $\left(0, -\frac{7}{3}\right)$, (-1.54, 0), and (4.54, 0). Asymptotes: x = -3, y



- 31. (d); Xmin = -2, Xmax = 8, Xscl = 1, and Ymin = -3, Ymax = 3, Yscl = 1.
- 32. (b); Xmin = -6, Xmax = 2, Xscl = 1, and Ymin = -3, Ymax = 3, Yscl = 1.
- 33. (a); Xmin = -3, Xmax = 5, Xscl = 1, and Ymin = -5, Ymax = 10, Yscl = 1.
- 34. (f); Xmin = -6, Xmax = 2, Xscl = 1, and Ymin = -5, Ymax = 5, Yscl = 1.
- 35. (e); Xmin = -2, Xmax = 8, Xscl = 1, and Ymin = -3, Ymax = 3, Yscl = 1.
- 36. (c); Xmin = -3, Xmax = 5, Xscl = 1, and Ymin = -3, Ymax = 8, Yscl = 1.
- 37. For $f(x) = 2/(2x^2 x 3)$, the numerator is never zero, and so f(x) never equals zero and the graph has no xintercepts. Because f(0) = -2/3, the y-intercept is -2/3. The denominator factors as $2x^2 - x - 3$ = (2x - 3)(x + 1), so there are vertical asymptotes at x = -1 and x = 3/2. And because the degree of the numerator is less than the degree of the denominator, the horizontal asymptote is y = 0. The graph supports this information and allows us to conclude that

 $\lim_{x \to -1^{-}} f(x) = \infty, \lim_{x \to -1^{+}} f(x) = -\infty, \lim_{x \to (32)^{-}} f(x) = -\infty,$ and $\lim_{x\to(3/2)^*} f(x) = \infty$.

The graph also shows a local maximum of -16/25 at



Intercept: $\left(0, -\frac{2}{3}\right)$

Domain: $(-\infty, -1) \cup \left(-1, \frac{3}{2}\right) \cup \left(\frac{3}{2}, \infty\right)$

Continuity: All $x \neq -1, \frac{3}{2}$

Increasing on $(-\infty, -1)$ and $\left(-1, \frac{1}{4}\right)$

Decreasing on $\left(\frac{1}{4}, \frac{3}{2}\right)$ and $\left(\frac{3}{2}, \infty\right)$

Not symmetric

Unbounded

Local maximum at $\left(\frac{1}{4}, -\frac{16}{25}\right)$

Horizontal asymptote: y = 0

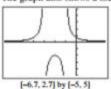
Vertical asymptotes: x = -1 and x = 3/2

End behavior: $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0$

38. For $g(x) = 2/(x^2 + 4x + 3)$, the numerator is never zero, and so g(x) never equals zero and the graph has no x-intercepts. Because g(0) = 2/3, the y-intercept is 2/3. The denominator factors as $x^2 + 4x + 3 = (x + 1)(x + 3)$, so there are vertical asymptotes at x = -3 and x = -1. And because the degree of the numerator is less than the degree of the denominator, the horizontal asymptote is y = 0. The graph supports this information and allows us to conclude that

 $\lim_{x \to -1^{-}} g(x) = \infty$, $\lim_{x \to -3^{+}} g(x) = -\infty$, $\lim_{x \to -1^{-}} g(x) = -\infty$, and $\lim_{x \to \infty} g(x) = \infty$.

The graph also shows a local maximum of -2 at x = -2.



Intercept: $\left(0, \frac{2}{3}\right)$

Domain: $(-\infty, -3) \cup (-3, -1) \cup (-1, \infty)$

Range: (-∞, -2] U (0, ∞)

Continuity: All $x \neq -3, -1$

Increasing on $(-\infty, -3)$ and (-3, -2]

Decreasing on [-2, -1) and $(-1, \infty)$

Symmetric about x = -2.

Unbounded

Local maximum at (-2, -2)Horizontal asymptote: y = 0Vertical asymptotes: x = -3 and x = -1End behavior: $\lim_{x \to 0} g(x) = \lim_{x \to 0} g(x) = 0$

39. For h(x) = (x - 1)/(x² - x - 12), the numerator is zero when x = 1, so the x-intercept of the graph is 1. Because h(0) = 1/12, the y-intercept is 1/12.

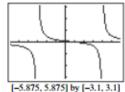
The denominator factors as

$$x^2 - x - 12 = (x + 3)(x - 4),$$

so there are vertical asymptotes at x = -3 and x = 4. And because the degree of the numerator is less than the degree of the denominator, the horizontal asymptote is y = 0. The graph supports this information and allows us to conclude that

$$\lim_{x\to -3^-} h(x) = -\infty, \lim_{x\to -3^+} h(x) = \infty, \lim_{x\to 4^-} h(x) = -\infty,$$
 and
$$\lim_{x\to 4^+} h(x) = \infty.$$

The graph shows no local extrema.



Intercepts:
$$\left(0, \frac{1}{12}\right)$$
, $(1, 0)$

Domain: $(-\infty, -3) \cup (-3, 4) \cup (4, \infty)$

Range: $(-\infty, \infty)$

Continuity: All $x \neq -3$, 4

Decreasing on $(-\infty, -3)$, (-3, 4), and $(4, \infty)$

Not symmetric

Unbounded

No local extrema

Horizontal asymptote: y = 0

Vertical asymptotes: x = -3 and x = 4

End behavior: $\lim_{x \to -\infty} h(x) = \lim_{x \to \infty} h(x) = 0$

40. For k(x) = (x + 1)/(x² - 3x - 10), the numerator is zero when x = -1, so the x-intercept of the graph is -1. Because k(0) = -1/10, the y-intercept is -1/10. The

$$x^2 - 3x - 10 = (x + 2)(x - 5),$$

denominator factors as

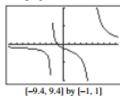
so there are vertical asymptotes at x = -2 and x = 5.

And because the degree of the numerator is less than the degree of the denominator, the horizontal asymptote is y = 0. The graph supports this information and allows us to conclude that

$$\lim_{x \to -2^-} k(x) = -\infty, \lim_{x \to 2^+} k(x) = \infty,$$

$$\lim_{x \to 5^-} k(x) = -\infty, \text{ and } \lim_{x \to 5^+} k(x) = \infty.$$

The graph shows no local extrema.



Intercepts:
$$(-1, 0)$$
, $(0, -0.1)$

Domain:
$$(-\infty, -2) \cup (-2, 5) \cup (5, \infty)$$

Range:
$$(-\infty, \infty)$$

Continuity: All $x \neq -2, 5$

Decreasing on $(-\infty, -2)$, (-2, 5), and $(5, \infty)$

Not symmetric

Unbounded

No local extrema

Horizontal asymptote: y = 0

Vertical asymptotes: x = -2 and x = 5

End behavior: $\lim_{x \to -\infty} k(x) = \lim_{x \to \infty} k(x) = 0$

41. For
$$f(x) = (x^2 + x - 2)/(x^2 - 9)$$
, the numerator factors as

 $x^2 + x - 2 = (x + 2)(x - 1),$

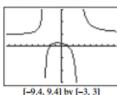
so the x-intercepts of the graph are -2 and 1. Because f(0) = 2/9, the y-intercept is 2/9. The denominator factors as

$$x^2 - 9 = (x + 3)(x - 3),$$

so there are vertical asymptotes at x = -3 and x = 3. And because the degree of the numerator equals the degree of the denominator with a ratio of leading terms that equals 1, the horizontal asymptote is y = 1. The graph supports this information and allows us to conclude that

$$\lim_{x\to -3^-} f(x) = \infty, \lim_{x\to -3^+} f(x) = -\infty, \lim_{x\to 3^-} f(x) = -\infty,$$
and
$$\lim_{x\to 3^+} f(x) = \infty.$$

The graph also shows a local maximum of about 0.260 at about x = -0.675.



Intercepts:
$$(-2, 0)$$
, $(1, 0)$, $\left(0, \frac{2}{9}\right)$

Domain: $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$

Range: $(-\infty, 0.260] \cup (1, \infty)$

Continuity: All $x \neq -3, 3$

Increasing on $(-\infty, -3)$ and (-3, -0.675]

Decreasing on [-0.675, 3) and $(3, \infty)$

Not symmetric

Unbounded

Local maximum at about (-0.675, 0.260)

Horizontal asymptote: y = 1

Vertical asymptotes: x = -3 and x = 3

End behavior: $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 1$

42. For $g(x) = (x^2 - x - 2)/(x^2 - 2x - 8)$, the numerator factors as

$$x^2 - x - 2 = (x + 1)(x - 2)$$

so the x-intercepts of the graph are -1 and 2. Because g(0) = 1/4, the y-intercept is 1/4. The denominator factors as

$$x^2 - 2x - 8 = (x + 2)(x - 4),$$

so there are vertical asymptotes at x = -2 and x = 4. And because the degree of the numerator equals the degree of the denominator with a ratio of leading terms that equals 1,