6. Translate left 5 units, reflect across x-axis, vertically stretch by 2. Asymptotes: x = -5, y = 0.

Translate left 3 units, reflect across x-axis, vertically stretch by 7, translate up 2 units. Asymptotes: x = -3, y = 2.

8. Translate right 1 unit, translate up 3 units. Asymptotes: x = 1, y = 3.

9. Translate left 4 units, vertically stretch by 13, translate down 2 units. Asymptotes: x = -4, y = -2.

Translate right 5 units, vertically stretch by 11, reflect across x-axis, translate down 3 units. Asymptotes: x = 5, y = -3.

- 11. $\lim_{x \to 3^{-}} f(x) = \infty$
- 12. $\lim_{x \to 0^+} f(x) = -\infty$
- $13. \lim_{x \to \infty} f(x) = 0$
- $14. \lim_{x \to \infty} f(x) = 0$
- 15. $\lim_{x \to -3^+} f(x) = \infty$
- 16. $\lim_{x \to -3^-} f(x) = -\infty$
- 17. $\lim_{x \to -\infty} f(x) = 5$
- **18.** $\lim_{x \to \infty} f(x) = 5$
- 19. The graph of $f(x) = (2x^2 1)/(x^2 + 3)$ suggests that there are no vertical asymptotes and that the horizontal asymptote is y = 2.

The domain of f(x) is all real numbers, so there are indeed no vertical asymptotes. Using polynomial long division, we find that

$$f(x) = \frac{2x^2 - 1}{x^2 + 3} = 2 - \frac{7}{x^2 + 3}.$$

When the value of |x| is large, the denominator $x^2 + 3$ is a large positive number, and $7/(x^2 + 3)$ is a small positive number, getting closer to zero as |x| increases. Therefore,

$$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 2, \text{ so } y = 2 \text{ is indeed a horizontal asymptote.}$$

20. The graph of $f(x) = 3x^2/(x^2 + 1)$ suggests that there are no vertical asymptotes and that the horizontal asymptote is y = 3.

The domain of f(x) is all real numbers, so there are indeed no vertical asymptotes. Using polynomial long division, we find that

$$f(x) = \frac{3x^2}{x^2 + 1} = 3 - \frac{3}{x^2 + 1}$$

When the value of |x| is large, the denominator $x^2 + 1$ is a large positive number, and $3/(x^2 + 1)$ is a small positive number, getting closer to zero as |x| increases. Therefore,

$$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 3, \text{ so } y = 3 \text{ is indeed a}$$
horizontal asymptote.

21. The graph of $f(x) = (2x + 1)/(x^2 - x)$ suggests that there are vertical asymptotes at x = 0 and x = 1, with $\lim_{x \to 0^+} f(x) = \infty$, $\lim_{x \to 0^+} f(x) = -\infty$, $\lim_{x \to 1^-} f(x) = -\infty$, and $\lim_{x\to 1^+} f(x) = \infty$, and that the horizontal asymptote is y = 0.

The domain of $f(x) = (2x + 1)/(x^2 - x) =$ (2x + 1)/[x(x - 1)] is all real numbers $x \neq 0, 1$, so there are indeed vertical asymptotes at x = 0 and x = 1. Rewriting one rational expression as two, we find that

$$f(x) = \frac{2x+1}{x^2 - x} = \frac{2x}{x^{2-x}} + \frac{1}{x^{2-x}}$$
$$= \frac{2}{x-1} + \frac{1}{x^2 - x}.$$

When the value of |x| is large, both terms get close to zero. Therefore,

$$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0,$$
so $y = 0$ is indeed a horizontal asymptote

so
$$y = 0$$
 is indeed a horizontal asymptote.

22. The graph of $f(x) = (x-3)/(x^2+3x)$ suggests that there are vertical asymptotes at x = -3 and x = 0, with $\lim_{x \to -\frac{1}{2}^{-}} f(x) = -\infty, \lim_{x \to -\frac{1}{2}^{+}} f(x) = \infty, \lim_{x \to 0^{-}} f(x) = \infty, \text{ and }$ $\lim_{x \to 3} f(x) = -\infty$, and that the horizontal asymptote

The domain of $f(x) = (x - 3)/(x^2 + 3x) =$ (x-3)/[x(x+3)] is all real numbers $x \neq -3$, 0, so there are indeed vertical asymptotes at x = -3 and x = 0. Rewriting one rational expression as two, we find that

$$f(x) = \frac{x-3}{x^2+3x} = \frac{x}{x^2+3x} - \frac{3}{x^2+3x}$$
$$= \frac{1}{x+3} - \frac{3}{x^2+3x}.$$

When the value of |x| is large, both terms get close to zero. Therefore,

$$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0,$$

so y = 0 is indeed a horizontal asymptote.

23. Intercepts: $\left(0, \frac{2}{3}\right)$ and (2, 0). Asymptotes: x = -1, x = 3, and y = 0.

24. Intercepts: $\left(0, -\frac{2}{3}\right)$ and (-2, 0). Asymptotes: x = -3, x = 1, and y = 0.

25. No intercepts. Asymptotes: x = -1, x = 0, x = 1, and

26. No intercepts. Asymptotes: x = -2, x = 0, x = 2, and v = 0.

27. Intercepts: (0, 2), (-1.28, 0), and (0.78, 0). Asymptotes: x = 1, x = -1, and y = 2.

 Intercepts: (0, -3), (-1.84, 0), and (2.17, 0). Asymptotes: x = -2, x = 2, and y = -3.

29. Intercept: $\left(0, \frac{3}{2}\right)$. Asymptotes: x = -2, y = x - 4.

30. Intercepts: $\left(0, -\frac{7}{3}\right)$, (-1.54, 0), and (4.54, 0).

Asymptotes: x = -3, y = x - 6.

- 31. (d); Xmin = -2, Xmax = 8, Xscl = 1, and Ymin = -3, Ymax = 3, Yscl = 1.
- 32. (b); Xmin = -6, Xmax = 2, Xscl = 1, and Ymin = -3, Ymax = 3, Yscl = 1.
- 33. (a); Xmin = -3, Xmax = 5, Xscl = 1, and Ymin = -5, Ymax = 10, Yscl = 1.
- 34. (f); Xmin = -6, Xmax = 2, Xscl = 1, and Ymin = -5, Ymax = 5, Yscl = 1.
- 35. (e); Xmin = -2, Xmax = 8, Xscl = 1, and Ymin = -3, Ymax = 3, Yscl = 1.
- 36. (c); Xmin = -3, Xmax = 5, Xscl = 1, and Ymin = -3, Ymax = 8, Yscl = 1.
- 37. For $f(x) = 2/(2x^2 x 3)$, the numerator is never zero, and so f(x) never equals zero and the graph has no xintercepts. Because f(0) = -2/3, the y-intercept is -2/3. The denominator factors as $2x^2 - x - 3$ = (2x - 3)(x + 1), so there are vertical asymptotes at x = -1 and x = 3/2. And because the degree of the numerator is less than the degree of the denominator, the horizontal asymptote is y = 0. The graph supports this information and allows us to conclude that

$$\lim_{x\to -1^-} f(x) = \infty, \lim_{x\to -1^+} f(x) = -\infty, \lim_{x\to (3/2)^-} f(x) = -\infty,$$
 and
$$\lim_{x\to (3/2)^+} f(x) = \infty.$$

The graph also shows a local maximum of -16/25 at x = 1/4.

Intercept: $\left(0, -\frac{2}{3}\right)$

Domain: $(-\infty, -1) \cup \left(-1, \frac{3}{2}\right) \cup \left(\frac{3}{2}, \infty\right)$

Range: $\left(-\infty, -\frac{16}{25}\right) \cup (0, \infty)$

Continuity: All $x \neq -1, \frac{3}{2}$

Increasing on $(-\infty, -1)$ and $\left(-1, \frac{1}{4}\right)$

Decreasing on $\left(\frac{1}{4}, \frac{3}{2}\right)$ and $\left(\frac{3}{2}, \infty\right)$

Not symmetric

Unbounded

Local maximum at $\left(\frac{1}{4}, -\frac{16}{25}\right)$

Horizontal asymptote: y = 0

Vertical asymptotes: x = -1 and x = 3/2

End behavior: $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0$

38. For $g(x) = 2/(x^2 + 4x + 3)$, the numerator is never zero, and so g(x) never equals zero and the graph has no x-intercepts. Because g(0) = 2/3, the y-intercept is 2/3. The denominator factors as $x^2 + 4x + 3 = (x + 1)(x + 3)$, so there are vertical asymptotes at x = -3 and x = -1. And because the degree of the numerator is less than the degree of the denominator, the horizontal asymptote is y = 0. The graph supports this information and allows us to conclude that

$$\lim_{x \to -3^-} g(x) = \infty, \lim_{x \to -3^+} g(x) = -\infty, \lim_{x \to -1^-} g(x) = -\infty,$$
and
$$\lim_{x \to -1^+} g(x) = \infty.$$

The graph also shows a local maximum of -2 at x = -2.

Intercept:
$$\left(0, \frac{2}{3}\right)$$

Domain: $(-\infty, -3) \cup (-3, -1) \cup (-1, \infty)$
Range: $(-\infty, -2] \cup (0, \infty)$
Continuity: All $x \neq -3, -1$
Increasing on $(-\infty, -3)$ and $(-3, -2]$
Decreasing on $[-2, -1)$ and $(-1, \infty)$
Symmetric about $x = -2$.
Unbounded