- Get your Pricker!
- 2.3 - Graphing Polynomials THE HOKEY POKEY BUT I TURNED MYSELF AROUND
(28)

$$
\begin{aligned}
& f(x)=x^{3}-x^{4}+3 x^{2}-2 x+7 \\
& \operatorname{Deg}=4 \\
& L C=-1 \\
& \lim _{x \rightarrow-\infty} f(x)=-\infty \quad \lim _{x \rightarrow \infty} f(x)=-\infty
\end{aligned}
$$

2.3 Graphing Polynomials - Zeros

* Polynomial with degree N has at most N zeros.
(1) Find zeros of $f(x)=x^{3}-5 x^{2}+4 x$ $0=x\left(x^{2}-5 x+4\right)$

$$
0=x(x-4)(x-1)
$$

$$
\text { zeros: } x=0,4,1
$$

Graph

Multiplicity of zeros
(2) $f(x)=(x-1)(2 x+5)^{2}(x-4)^{3}$

(3)

$$
\begin{aligned}
f(x) & =-\frac{1}{4}(x+2)^{3}(x-5) \\
\text { Deg } & =4 \\
\text { L. } C & =-\frac{1}{4}(n e g)^{\downarrow} \\
\text { Zeros } & =x=5,-2 \\
y-\text { int } & =x=0 \\
y & =-\frac{1}{4}(0+2)^{3}(0-5) \\
& =-2(-5)=10
\end{aligned}
$$

y-intercept
Set $x=0$
$y=(0-1)(2(0)+5)^{2}(0-4)^{3}$

$$
=(-1)(25)(-64)
$$

$$
=1600
$$

