Make limfled = L and limg(x) = M

<u> </u>	メラと	
Sum Rule	$\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = \bot + M$	
Difference Rule	$\lim_{x \to c} (f(x) - g(x)) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x) = \mathbf{L} - \mathbf{M}$	
Product Rule	$\lim_{x \to c} (f(x) \bullet g(x)) = \lim_{x \to c} f(x) \bullet \lim_{x \to c} g(x) = \bigsqcup_{x \to c} g(x)$	
Constant	$\lim_{x \to c} (k \bullet f(x)) = k \bullet \lim_{x \to c} f(x)$	
Multiple Rule	$x \to c$ $x \to c$ $x \to c$	
Quotient Rule	$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} = \frac{\bigsqcup_{x \to c} f(x)}{M}$	
Power Rule	$\lim_{x \to c} (f(x))^n = (\lim_{x \to c} f(x))^n, \text{ for n is a positive integer}$	n -
Root Rule	$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)} \text{ for } n \ge 2$ $\text{and } \lim_{x \to c} \sqrt[n]{f(x)} \text{ are real numbers}$	七

$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

Pule
$$\lim_{x\to\infty} \frac{\sin ax}{ax} = 0$$