Section 2.1 Exercises

- 1. Not a polynomial function because of the exponent -5
- 2. Polynomial of degree 1 with leading coefficient 2
- 3. Polynomial of degree 5 with leading coefficient 2
- 4. Polynomial of degree 0 with leading coefficient 13
- 5. Not a polynomial function because of the radical
- 6. Polynomial of degree 2 with leading coefficient -5

7.
$$m = \frac{5}{7}$$
 so $y - 4 = \frac{5}{7}(x - 2) \Rightarrow f(x) = \frac{5}{7}x + \frac{18}{7}$

8.
$$m = -\frac{7}{9}$$
 so $y - 5 = -\frac{7}{9}(x + 3) \Rightarrow f(x) = -\frac{7}{9}x + \frac{8}{3}$

9.
$$m = -\frac{4}{3}$$
 so $y - 6 = -\frac{4}{3}(x + 4) \Rightarrow f(x) = -\frac{4}{3}x + \frac{2}{3}$

10.
$$m = \frac{5}{4}$$
 so $y - 2 = \frac{5}{4}(x - 1) \Rightarrow f(x) = \frac{5}{4}x + \frac{3}{4}$

11.
$$m = -1$$
 so $y - 3 = -1(x - 0) \Rightarrow f(x) = -x + 3$

12.
$$m = \frac{1}{2}$$
 so $y - 2 = \frac{1}{2}(x - 0) \Rightarrow f(x) = \frac{1}{2}x + 2$

- (a)—The vertex is at (-1, -3), in Quadrant III, eliminating all but (a) and (d). Since f(0) = -1, it must be (a).
- 14. (d)—The vertex is at (-2, -7), in Quadrant III, eliminating all but (a) and (d). Since f(0) = 5, it must be (d).
- 15. (b)—The vertex is in Quadrant I, at (1, 4), meaning it must be either (b) or (f). Since f(0) = 1, it cannot be (f): if the vertex in (f) is (1, 4), then the intersection with the y-axis would be about (0, 3). It must be (b).

- 16. (f)—The vertex is in Quadrant I, at (1, 12), meaning it must be either (b) or (f). Since f(0) = 10, it cannot be (b): if the vertex in (b) is (1, 12), then the intersection with the y-axis occurs considerably lower than (0, 10). It must be (f).
- (e)—The vertex is at (1, -3) in Quadrant IV, so it must be (e).
- (c)—The vertex is at (-1, 12) in Quadrant II and the parabola opens down, so it must be (c).
- 19. Translate the graph of $f(x) = x^2$ 3 units right to obtain the graph of $h(x) = (x 3)^2$, and translate this graph 2 units down to obtain the graph of $g(x) = (x 3)^2 2$.

20. Vertically shrink the graph of $f(x) = x^2$ by a factor of $\frac{1}{4}$ to obtain the graph of $g(x) = \frac{1}{4}x^2$, and translate this

graph 1 unit down to obtain the graph of $h(x) = \frac{1}{4}x^2 - 1$.

21. Translate the graph of $f(x) = x^2 2$ units left to obtain the graph of $h(x) = (x + 2)^2$, vertically shrink this graph by a factor of $\frac{1}{2}$ to obtain the graph of $k(x) = \frac{1}{2}(x + 2)^2$, and translate this graph 3 units down to obtain the graph of $g(x) = \frac{1}{2}(x + 2)^2 = 3$

22. Vertically stretch the graph of $f(x) = x^2$ by a factor of 3 to obtain the graph of $g(x) = 3x^2$, reflect this graph across the x-axis to obtain the graph of $k(x) = -3x^2$, and translate this graph up 2 units to obtain the graph of $h(x) = -3x^2 + 2$.

For #23-32, with an equation of the form $f(x) = a(x - h)^2 + k$, the vertex is (h, k) and the axis is x = h.

- **23.** Vertex: (1, 5); axis: x = 1
- **24.** Vertex: (-2, -1); axis: x = -2
- **25.** Vertex: (1, -7); axis: x = 1
- **26.** Vertex: $(\sqrt{3}, 4)$; axis: $x = \sqrt{3}$

27.
$$f(x) = 3\left(x^2 + \frac{5}{3}x\right) - 4$$

= $3\left(x^2 + 2 \cdot \frac{5}{6}x + \frac{25}{36}\right) - 4 - \frac{25}{12} = 3\left(x + \frac{5}{6}\right)^2 - \frac{73}{12}$
Vertex: $\left(-\frac{5}{6}, -\frac{73}{12}\right)$; axis: $x = -\frac{5}{6}$

28.
$$f(x) = -2\left(x^2 - \frac{7}{2}x\right) - 3$$

 $= -2\left(x^2 - 2 \cdot \frac{7}{4}x + \frac{49}{16}\right) - 3 + \frac{49}{8}$
 $= -2\left(x - \frac{7}{4}\right)^2 + \frac{25}{8}$
Vertex: $\left(\frac{7}{4}, \frac{25}{8}\right)$; axis: $x = \frac{7}{4}$

29.
$$f(x) = -(x^2 - 8x) + 3$$

= $-(x^2 - 2 \cdot 4x + 16) + 3 + 16 = -(x - 4)^2 + 19$
Vertex: (4, 19); axis: $x = 4$

30.
$$f(x) = 4\left(x^2 - \frac{1}{2}x\right) + 6$$

 $= 4\left(x^2 - 2 \cdot \frac{1}{4}x + \frac{1}{16}\right) + 6 - \frac{1}{4} = 4\left(x - \frac{1}{4}\right)^2 + \frac{23}{4}$
Vertex: $\left(\frac{1}{4}, \frac{23}{4}\right)$; axis: $x = \frac{1}{4}$

31.
$$g(x) = 5\left(x^2 - \frac{6}{5}x\right) + 4$$

= $5\left(x^2 - 2 \cdot \frac{3}{5}x + \frac{9}{25}\right) + 4 - \frac{9}{5} = 5\left(x - \frac{3}{5}\right)^2 + \frac{11}{5}$
Vertex: $\left(\frac{3}{5}, \frac{11}{5}\right)$; axis: $x = \frac{3}{5}$

32.
$$h(x) = -2\left(x^2 + \frac{7}{2}x\right) - 4$$

= $-2\left(x^2 + 2 \cdot \frac{7}{4}x + \frac{49}{16}\right) - 4 + \frac{49}{8}$
= $-2\left(x + \frac{7}{4}\right)^2 + \frac{17}{8}$

Vertex:
$$\left(-\frac{7}{4}, \frac{17}{8}\right)$$
; axis: $x = -\frac{7}{4}$

33. $f(x) = (x^2 - 4x + 4) + 6 - 4 = (x - 2)^2 + 2$. Vertex: (2, 2); axis: x = 2; opens upward; does not intersect x-axis.

34. $g(x) = (x^2 - 6x + 9) + 12 - 9 = (x - 3)^2 + 3$. Vertex: (3, 3); axis: x = 3; opens upward; does not intersect x-axis.

35. $f(x) = -(x^2 + 16x) + 10$ $= -(x^2 + 16x + 64) + 10 + 64 = -(x + 8)^2 + 74.$ Vertex: (-8, 74); axis: x = -8; opens downward; intersects x-axis at about -16.602 and 0.602(-8 $\pm \sqrt{74}$).

36. $h(x) = -(x^2 - 2x) + 8 = -(x^2 - 2x + 1) + 8 + 1$ $= -(x-1)^2 + 9$ Vertex: (1, 9); axis: x = 1; opens downward; intersects x-axis at -2 and 4.

37.
$$f(x) = 2(x^2 + 3x) + 7$$

= $2\left(x^2 + 3x + \frac{9}{4}\right) + 7 - \frac{9}{2} = 2\left(x + \frac{3}{2}\right)^2 + \frac{5}{2}$.

Vertex: $\left(-\frac{3}{2}, \frac{5}{2}\right)$; axis: $x = -\frac{3}{2}$; opens upward; does not intersect the x-axis; vertically stretched by 2.

38.
$$g(x) = 5(x^2 - 5x) + 12$$

 $= 5\left(x^2 - 5x + \frac{25}{4}\right) + 12 - \frac{125}{4}$
 $= 5\left(x - \frac{5}{2}\right)^2 - \frac{77}{4}$.
Vertex: $\left(\frac{5}{2}, -\frac{77}{4}\right)$; axis: $x = \frac{5}{2}$; opens upward; intersects x -axis at about 0.538 and $4.462\left(\text{or } \frac{5}{2} \pm \frac{1}{10}\sqrt{385}\right)$; vertically stretched by 5.

For #39-44, use the form $y = a(x - h)^2 + k$, taking the vertex (h, k) from the graph or other given information.

- 39. h = -1 and k = -3, so $y = a(x + 1)^2 3$. Now substitute x = 1, y = 5 to obtain 5 = 4a 3, so a = 2: $y = 2(x + 1)^2 3$.
- **40.** h = 2 and k = -7, so $y = a(x 2)^2 7$. Now substitute x = 0, y = 5 to obtain 5 = 4a 7, so a = 3: $y = 3(x 2)^2 7$.
- **41.** h = 1 and k = 11, so $y = a(x 1)^2 + 11$. Now substitute x = 4, y = -7 to obtain -7 = 9a + 11, so a = -2: $y = -2(x 1)^2 + 11$.
- **42.** h = -1 and k = 5, so $y = a(x + 1)^2 + 5$. Now substitute x = 2, y = -13 to obtain -13 = 9a + 5, so a = -2: $y = -2(x + 1)^2 + 5$.
- **43.** h = 1 and k = 3, so $y = a(x 1)^2 + 3$. Now substitute x = 0, y = 5 to obtain 5 = a + 3, so a = 2: $y = 2(x 1)^2 + 3$.
- **44.** h = -2 and k = -5, so $y = a(x + 2)^2 5$. Now substitute x = -4, y = -27 to obtain -27 = 4a 5, so $a = -\frac{11}{2}$: $y = -\frac{11}{2}(x + 2)^2 5$.
- 45. Strong positive
- 46. Strong negative

- 47. Weak positive
- 48. No correlation
- - (b) Strong, positive, linear; r = 0.948

- (b) Strong, negative, linear; r = −0.999
- **51.** $m = -\frac{2350}{5} = -470$ and b = 2350, so v(t) = -470t + 2350. At t = 3, v(3) = (-470)(3) + 2350 = \$940.
- 52. Let x be the number of dolls produced each week and y be the average weekly costs. Then m = 4.70, and b = 350, so y = 4.70x + 350, or 500 = 4.70x + 350: x = 32; 32 dolls are produced each week.
- 53. (a) y ≈ 0.148x + 19.56. The slope, m ≈ 0.148, represents the average annual increase in fuel economy for light duty trucks, about 0.15 mpg per year.
 - (b) Setting x = 25 in the regression equation leads to y ≈ 24 mpg.
- 54. If the length is x, then the width is 50 x, so
 A(x) = x(50 x); maximum of 625 ft² when x = 25 (the dimensions are 25 ft × 25 ft).
- 55. (a) [0, 100] by [0, 1000] is one possibility.
 - (b) When x ≈ 107.335 or x ≈ 372.665 either 107,335 units or 372.665 units.
- 56. The area of the picture and the frame, if the width of the picture is x ft, is A(x) = (x + 2)(x + 5) ft². This equals 208 when x = 11, so the painting is 11 ft × 14 ft.
- **57.** If the strip is *x* feet wide, the area of the strip is $A(x) = (25 + 2x)(40 + 2x) 1000 \text{ ft}^2$. This equals 504 ft² when x = 3.5 ft.
- **58.** (a) R(x) = (800 + 20x)(300 5x).
 - (b) [0, 25] by [200,000, 260,000] is one possibility (shown).

[0, 25] by [200,000, 260,000]