Pre-Calculus
Exam Review
Sections 2.5-2.8
Modeling Functions

NO TALC!

1) For each of the following, find the domain, range, asymptotes (H/V/Slant), removable discontinuities, limits at all asymptotes, $\mathrm{x} \& \mathrm{y}$ intercepts, and sketch a graph.
a) $y=\frac{2 x}{x-3}$

VA $x=3$ dom: $(-\infty, 3) \cup(3, \infty)$
HA $y=2$ range: $(-\infty, 2) \cup(2, \infty)$

$$
\begin{aligned}
x-\text { int: } 0 & =\frac{2 x}{x-3} \\
0 & =2 x \\
x & =0
\end{aligned}
$$

b)

$$
\begin{aligned}
& y=\frac{x-2}{x^{2}+3 x-10} \\
& (x-2)(x+5) \\
& y=\frac{1}{x+5}
\end{aligned}
$$

VA. $x=-5$
$\operatorname{RD}\left(2, \frac{1}{7}\right)$

$$
\text { HA } y=0 \quad \lim _{x \rightarrow-\infty} f(x)=0 \quad \lim _{x \rightarrow \infty} f(x)=0
$$

c) $y=\frac{3 x^{2}+4 x-2}{x+1}$
\checkmark A: $x=-1$
HA: None
Slant A: -1] $3 \quad 4 \quad-2$

$$
\underbrace{\frac{3-1 \mid-3}{y \rightarrow-3 x+1}}_{\text {aton for the poyntomital function with degree } 4 \text { an }} \quad \lim _{x \rightarrow-\infty} f(x)=3 x+1
$$

y-int: $y=0$

2) Write an equation for the polynomial function with degree 4 and having zeros at $3,-1$, $a n \vec{d} \vec{d}^{-1 t}-i$.

Factored Form:

$$
f(x)=(x-3)(x+1)(x-(2-i))(x-(2+i))
$$

also 2+i

Standard Form:

3) Solve $\frac{x}{x+1}+\frac{2}{x}=\frac{5}{x^{2}+x}$ using an algebraic method (LCD).

$$
x(x+1)\left[\frac{x}{x+1}+\frac{2}{x}=\frac{5}{x(x+1)}\right]
$$

$$
\begin{aligned}
& x^{2}+2 x-3=0 \\
& (x-1)(x+3)=0
\end{aligned}
$$

$$
x^{2}+2(x+1)=5
$$

$$
x^{2}+2 x+2=5
$$

4) Solve $(x+3)(x-1)(x-4)<0$ using an algebraic method (sign chart).

$$
(-\infty,-3) \cup(1,4)
$$

CALL OK!
5) Find ALL the zeros for $y=x^{4}-2 x^{2}+16 x-15$. from calc, $x=-3,1$
-3) $10-2$ 16 -15

$x^{2}-2 x+5$
6) A pan is to be made by cutting out square corners of a 32 " by 44 " piece of sheet metal, folding up the sides, and welding the seams. What size squares should be cut out for the pan to have a maximum volume? ... for the pan to have a volume of at least 3740 cubic inches?

$$
\begin{aligned}
& V=1 \times w \times h \\
& y_{i}=(44-2 x)(32-2 x) x \\
& y_{2}=3740 \text { intersections: } \\
& x=5 \mathrm{in}, 7.3 \text { in }
\end{aligned}
$$

$$
M_{a x}=3840.8 \text { in }^{3}
$$

$x=6.1$ in cuts

